Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquet des phénomènes électriques, mécaniques, fluidiques et chimiques. utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Coupled Magnetodynamic and Electric Circuit Models for Superconducting Fault Current Limiter

L. Graber[1], J. Kvitkovic[1], T. Chiocchio[1], M. Steurer[1], S. Pamidi[1], and A. Usoskin[2]
[1]Center for Advanced Power Systems, Florida State University, Tallahassee, FL
[2]Bruker Energy & Supercon Technologies Inc., Billerica, MA

Finite element models, which include the shielding characteristics of superconductors are often complex and would currently not allow us to study 3D models of devices of complex geometry such as fault current limiters. We propose instead a model based on variable electric conductivity, which is suitable to simulate magnetic field characteristics of inductive superconducting fault current ...

Simulation Studies on Stress Generation and Volume Expansion due to Electrochemical Lithium Insertion in a Silicon Nanowire

G. Sikha, and J. Gordon
Applied Materials, Inc.
Santa Clara, CA

Silicon electrodes are presently being pursued as the potential negative electrode for lithium-ion batteries owing to its high gravimetric (mAh/g) and volumetric capacity (mAh/L) compared to the existing state of the art graphite electrode. Recent experimental studies have demonstrated the use of nano size Si electrodes which minimizes insertion induced stresses due to facile strain ...

Simulation of Quench Propagation in a Double-Helix Superconducting Magnet with COMSOL Multiphysics

P. Masson
Advanced Magnet Lab
Palm Bay, FL

The paper presents the numerical analysis of quench propagation in a DH magnet wound with a commercially available MgB2 wire in a fiber-glass composite matrix and operating at 20 K. The quench is induced by a small heater located on the first layer of the magnet close to the peak field area. The quench dynamics, peak temperature along with detection requirements are derived from the simulation ...

Microwave Drying of Cellular Ceramic Substrates: A Conjugate Modeling Approach to Understand Surface Moisture Migration

A. Halder, and J. George
Corning, Inc.
Painted Post, NY

Microwave drying processes are critical components in the manufacture of cellular ceramic substrates and filters. The objective of this study is to develop a comprehensive model at a small scale and include all the possible physics that are important during microwave drying processes. Based on the results, conclusions are made on the importance of different factors in drying.

Optimization of a High-Temperature High-Pressure Direct Wafer Bonding Process for III-V Semiconductors

R. Martin, J. Kozak, K. Anglin, and W. Goodhue
University of Massachusetts Lowell
Lowell, MA

Many optoelectronic devices utilize a heterojunction of a pair semiconducting materials including high-efficiency MEMS devices, solar cells, LEDs, and VCSELs. One fabrication technique which achieves such a device is direct wafer fusion. To optimize the process, COMSOL Multiphysics 4.0 was used to test various geometric configurations of the fixture. 2D and 3D models were created in order ...

An Analysis of Spin-Diffusion Dominated Ferrofluid Spin-Up Flows in Uniform Rotating Magnetic Fields

S. Khushrushahi[1], A. Guerrero[2], C. Rinaldi[3], and M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA
[2]Univeridad Industrial de Santander, Bucaramanga, Colombia
[3]University of Puerto Rico, Mayaguez, Mayaguez, PR

This work analyzes the spin-diffusion dominated explanation for spin-up bulk flows in ferrofluid filled cylinders, with no free surface, subjected to a uniform rotating magnetic field. COMSOL results are compared to experimental results and analytical results. Simulating ferrofluid spin-up flows have many subtleties, especially when using a single domain region to model the ferrofluid cylinder ...

Study of AC Electrothermal Phenomena Models

S. Loire, and P. Kauffmann
University of California
Santa Barbara, CA

Recently, electrokinetic flows have raised the interest of the scientific community. Driving flow with an electric field leads to promising applications for mixing, concentration, pumping application in lab on chips. However, current models are still inaccurate and don\'t fit the measures. The simple decoupled model developed by Ramos et al does not predict velocities for all parameters. ...

Modeling and Simulation of Artificial Core-Shell Based Nanodielectrics for Electrostatic Capacitors Applications

D. Musuwathi Ekanath[1], N. Badi[1], and A. Bensaoula[2]
[1]Center for Advanced Materials, University of Houston, Houston, TX
[2]Dept. of Physics, University of Houston, Houston, TX

The need for high storage capacitors led to the development of polymer based capacitors. Polymers have high processability, mechanical flexibility, electrical breakdown strength and compatibility with printed circuit board (PCB) technologies; but usually have very low permittivity (K). In COMSOL Multiphysics software, the AC/DC module is selected and the In-plane electric currents are applied ...

Analog and FEM Models of Lava Dome Dynamics

P. Vincent[1], and P. Zevada[2]
[1]College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Oregon
[2]Dept. of Tectonics and Geodynamics, Institute of Geophysics ASCR, v.v.i., Prague, Czech Republic

Extrusion of highly viscous lavas that spread laterally and form lava domes in craters of large volcanoes is associated with significant volcanic hazards. Gas overpressure driven fragmentation of the lava dome or collapse and slumping of marginal sections or entire mass of the dome can trigger dangerous pyroclastic flows that threaten surrounding populations up to tens of kilometers away. We ...

Solving the Paraxial Wave Equation using COMSOL

P. Mikulski, K. Mcilhany, and R. Malek-Madani
United States Naval Academy
Annapolis, MD

Here we present and discuss numerical solutions to the paraxial wave equation using COMSOL (2D, PDE, General Form, time-dependent analysis). Ultimately, the goal is to extend this treatment of free-space beam propagation to the case of propagation through a medium that is non-uniform and subject to non-linear effects where the beam itself is modifying the properties of the medium in which it is ...

Quick Search

2681 - 2690 of 3226 First | < Previous | Next > | Last