Technical Papers and Presentations

Ici vous trouverez les présentations issues des Conférences COMSOL à travers le monde. Réalisées par des utilisateurs de COMSOL Multiphysics, ces présentations explorent tous les domaines actuels d'innovation. Les applications couvrent pratiquement tous les secteurs industriels et impliquet des phénomènes électriques, mécaniques, fluidiques et chimiques. utilisez la recherche rapide pour trouver les présentations les plus intéressantes dans votre domaine d'intérêt.

Tunable MEMS Capacitor for mm and μm Wave Generation

Arpita Das[1], Amrita Nandy[1], Sakuntala Mahapatra[1], Sk. Mohammed Ali[1], Minu samantary[1]
[1]National MEMS design centre ,Department of Electronics and Telecommunication, Trident Academy of Technology, Biju Pattnaik University of Technology , India

This paper demonstrates the design of a tunable MEMS capacitor with two plates (one movable and one fixed). The response time obtained is 5μs. The tunable capacitor plays an important role in RF circuits. We focus on a tunable capacitor simulated using COMSOL Multiphysics®. In an electrostatically tunable parallel plate capacitor, you can modify the distance between the two plates when the ...

Advanced 3D Imaging Coupled to Modeling of Fuel Cell and Battery Electrodes

F. Tariq[1], V. Yufit[1], M. Marinescu[1], G. Cui[1], M. Kishimoto[1], N. Brandon[1]
[1]Imperial College London, London, United Kingdom

Solid Oxide Fuel Cells (SOFC) and Li-ion batteries (LIB) are electrochemical devices where performance is dependent on reactions inside porous electrode microstructures. Here we use tomographic techniques to probe 3D electrode structures (anodes and cathodes) at micro-nanometer length scales. Subsequently, micro/nano structural changes in electrodes are characterized and quantified. Utilizing ...

Simulation of a Single-Sided Magnetic Particle Imaging Device with COMSOL Multiphysics®

K. Gräfe[1], J. Mrongowius[1], T.M. Buzug[1]
[1]Institute of Medical Engineering, University of Luebeck, Germany

For the MPI imaging process, superparamagnetic iron oxide nanoparticles (SPIONs) are used as tracer material. The particles are excited by a sinusoidally varying magnetic field. A field-free point (FFP) is generated by the superposition of two magnetic fields. The FFP is important for the imaging process, since only the SPIONs in the FFP and its direct neighbourhood are essential for the received ...

Design Optimisation of an Field Free Point Magnetic Particle Imaging scanner

G. Bringout[1], T.M. Buzug[1]
[1]Institute of Medical Engineering, University of Lübeck, Lübeck, Schleswig-Holstein, Germany

Magnetic Particle Imaging (MPI) is a new imaging technology based on the non-linear magnetisation of magnetic nanoparticles which can be used as a tracer material. In a high speed 1D MPI Device, a sinusoidal signal containing a single frequency generate a time-varying magnetic field via the drive coil. We propose to use a COMSOL Multiphysics® simulation to be able to calculate otherwise ...

Optimizing Transducer Configuration of Capacitive Sensors for Agricultural Applications

N. Stroia[1], D. Moga[1], G. Mocanu[1], Z. Barabas[1], R. Moga [2]
[1]Technical University of Cluj-Napoca, Cluj-Napoca, Romania

This work aims to determine optimized configuration using COMSOL Multiphysics® for a class of transducers. Two types of capacitive sensors needed for monitoring and control in agriculture are investigated: a rain sensor and a soil humidity sensor. COMSOL Multiphysics® is used to test various configurations for both transducers, like the number of teeth in the comb, the depth of the teeth, the ...

Integrated Solar Thermal Collector with Heat Storage

A.R. Sánchez-Guitard[1], E. Ruiz-Reina[1]
[1]University of Málaga, Málaga, Spain

In this work, we study the design of a new integrated system for Solar Water Heating that combines the solar thermal energy collection (primary circuit) with the heat storage (secondary circuit) into the same device. We have performed different finite element method simulations using COMSOL Multiphysics®, for solving the equations of heat transfer (conduction and convection) and those of fluid ...

Simulated Rheometry of a Nonlinear Viscoelastic Fluid

A. Czirják[1], Z. Kőkuti[1], G. Tóth-Molnár[1], P. Ailer[2], L. Palkovics[2], G. Szabó[1]
[1]University of Szeged, Szeged, Hungary
[2]Kecskemét College, Kecskemét, Hungary

In certain cases, the accuracy of measurements with a rotational rheometer can be influenced by inefficient thermal management, by the heat generated in the sample, or by rod-climbing due to the Weissenberg effect. We investigate the effect of these phenomena with simulations in COMSOL Multiphysics®. Our model is based on the axial symmetric (2D) formulation of the two-phase flow with the ...

Understanding of How Megathrust Earthquakes Affect Volcanoes

Youichiro TAKADA[1]
[1]Kyoto University, Kyoto, Kyoto, Japan

Several volcanic regions in the northeastern Honshu locally subsided in response to the crustal deformation associated with the 2011 Mw 9.0 Tohoku earthquake. High temperature rocks are distributed at shallow depths under these volcanic regions, and we interpret that the localized deformation of such hot regions due to the earthquake fault rupture caused the subsidence. We applied COMSOL ...

Drying Model of Two-Particle System Solution Considering Capillary Pressure

Kanji INOKO[1]

[1]Toyota Technical Development Corporation, Toyota, Aichi, Japan

The performance of Li-ion battery is known to be dependent on the thickness direction distribution of binder volume fraction. The distribution is determined by drying process of electrode ink, which contains large active material and small binder. With the aim of predicting binder segregation, we studied new drying model of two-particle system solution by considering capillary pressure.

Numerical Simulation for Landfill Stabilization Process considering Degradation of Organic Chemical Compounds in Waste

Hiroyuki ISHIMORI[1]
[1]Ritsumeikan University, Kyoto, Kyoto, Japan

This presentation describes the numerical simulation model where gas/liquid two-phase porous media flow equations are coupled to multicomponent gas-phase transport and water-phase transport equations in COMSOL Multiphysics. This is done in order to predict the landfill stabilization process considering degradation of organic chemical compounds in waste.

Quick Search

3191 - 3200 of 3226 First | < Previous | Next > | Last