Generate Custom Magnetic Prospecting Analyses by Designing an App

Caty Fairclough January 20, 2017

Magnetic prospecting is a useful technique for finding iron ore deposits and reducing exploration costs. While simulation provides a way to better understand and improve this process, generating results for each new scenario can be time consuming. Instead, engineers can increase efficiency by designing a magnetic prospecting app for personalized analyses. Here, we discuss an app that quickly generates customized results by enabling users to import heightmaps and geographical data and then add magnetic simulations.

Lire la Suite

Bridget Paulus January 16, 2017

When a pipe springs a leak, it’s important to find its location with a quick and accurate method. Engineers at Echologics — a Mueller Technologies Company — use a combination of acoustic sensors and simulation applications to pinpoint such leaks. Sebastien Perrier of Echologics discussed the benefits of this approach and gave a live demonstration of an acoustics modeling app during his keynote talk at the COMSOL Conference 2016 Boston. If you missed Sebastien’s presentation, you can watch it below.

Lire la Suite

Fanny Griesmer January 4, 2017

If an inkjet printhead nozzle is poorly designed, it will lead to a low-quality end product — whether it’s used in a 2D or 3D printer, the fabrication of an integrated circuit, or even DNA synthesis. With simulation, you can determine the ideal printhead nozzle dimensions to achieve precise material deposition. And with the COMSOL Multiphysics® simulation software, you can save time by turning your model into an app for use by other project stakeholders.

Lire la Suite

Caty Fairclough December 15, 2016

For patients with renal failure, efficient dialysis treatment is vital. One point of focus is designing high-performance dialysis equipment that increases contaminant removal, improving treatments like hemodialysis. To accomplish this, you can study aspects of the hemodialysis process, such as membrane dialysis devices, with numerical modeling apps. These apps, like the one discussed here, enable users to more quickly analyze the effects of different inputs and improve designs.

Lire la Suite

Bridget Cunningham December 13, 2016

Learning how to use computational tools requires training. This is why a large group of stakeholders — one that continues to grow — relies on a small pool of experts to perform simulation analyses. The Application Builder, part of the COMSOL Multiphysics® software, is helping to bridge this gap. Simulation experts can now wrap models in an easy-to-use interface, making multiphysics simulation more accessible to a wider audience. See what our customers have to say about the Application Builder.

Lire la Suite

Lorant Olasz November 24, 2016

For many years, it’s been possible to analyze synchronized CAD geometries in COMSOL Multiphysics® via the LiveLink™ interfacing products. But did you know that you can also incorporate this functionality into an easy-to-use simulation app? With an app, you can dynamically modify your geometry in a CAD program such as SOLIDWORKS® and use this information to analyze new product designs. Today, we will demonstrate how to do so, using the new Bike Frame Analyzer app as an example.

Lire la Suite

Bridget Cunningham November 14, 2016

When designing a perforated well to recover oil and gas, choosing the right number of perforations with the appropriate properties is key. Too many holes and you run the risk of equipment failure or injury; too few and you decrease productivity levels. One way to achieve this balance and improve the safety and productivity of the recovery operation is to model fluid flow near the wells. Let’s see how the Application Builder makes this process even more efficient.

Lire la Suite

Amlan Barua November 10, 2016

In a previous blog post, we discussed the physiological basis of generating action potential in the excitable cells of living organisms. We spoke about the simple Fitzhugh-Nagumo model, which emulates the process of depolarization and repolarization in a cell’s membrane potential. Today, we analyze a more advanced model for simulating action potential, the Hodgkin-Huxley model. We also go over how to use a computational app to streamline this type of analysis.

Lire la Suite

Jonathan Velasco October 26, 2016

Aside from the winding type, concentrated or distributed, the logic behind the design of electrical machines is relatively similar, as it’s based on their phasor diagrams. Using an induction motor benchmark model with a concentrated winding, we’ll show you how to create selections in the COMSOL Multiphysics® software to streamline the analysis of your winding design. We’ll then demonstrate how to further advance your simulation studies by automating these processes with the Application Builder.

Lire la Suite

Amlan Barua October 7, 2016

In 1961, R. Fitzhugh (Ref. 1) and J. Nagumo proposed a model for emulating the current signal observed in a living organism’s excitable cells. This became known as the FitzHugh-Nagumo (FN) model of mathematical neuroscience and is a simpler version of the Hodgkin-Huxley (HH) model (Ref. 2), which demonstrates the spiking currents in neurons. In today’s blog post, we’ll examine the dynamics of the FN model by building an interactive app in the COMSOL Multiphysics® software.

Lire la Suite

Abbie Weingaertner September 12, 2016

Polarizing beam splitters are optical devices used to split a single light beam into two beams of varying linear polarizations. These devices are useful for splitting high-intensity light beams like lasers as, unlike absorptive polarizers, they do not absorb or dissipate the energy of the rejected polarization state. See why creating a numerical modeling app offers a more efficient approach to analyzing and optimizing the design of these devices.

Lire la Suite



1 2 3 4 5 10