3 Approaches to Modeling Moving Loads and Constraints in COMSOL®

Walter Frei October 22, 2018

One of the core strengths of the COMSOL Multiphysics® software is the ability to easily define loads and constraints that move over time. There are actually several different ways in which this can be done, all within the core functionality of the software. In today’s blog post, we will guide you through three of these approaches.

Lire la Suite

Caty Fairclough October 4, 2018

Imagine that you’re indoors during a thunderstorm, watching raindrops trickle down the window. Despite the storm, you remain dry and warm thanks to the building envelope protecting you from the outside environment. To design a well-functioning building envelope, engineers need to account for a variety of different factors. Simulation can help address this need.

Lire la Suite

Thomas Forrister September 20, 2018

After a pleasant day at the beach, you open your car door. It’s warm inside the vehicle, but it’s nothing a little air conditioning can’t fix. Then you sit down. The seat is burning hot, making for an uncomfortable ride home. Fortunately, there’s a way to avoid this scenario: Engineers can use thermoelectric devices that leverage the Seebeck and Peltier effects to control the temperature of car seats (among other applications).

Lire la Suite

Chandan Kumar September 5, 2018

To characterize hyperelastic materials, we need experimental data from a variety of tests, including subjection to uniaxial tension and compression, biaxial tension and compression, and torsion. Here, we show how to model the compression of a sphere made of an elastic foam using tension and compression test data obtained via uniaxial and equibiaxial tests. We demonstrate the use of the compressible Storakers hyperelastic material model for computation as well as how force-versus-stretch relationships are calculated for uniaxial and equibiaxial tests.

Lire la Suite

Brianne Costa August 30, 2018

In 1880, Alexander Graham Bell wrote a letter to his father, saying: “I have heard articulate speech by sunlight! I have heard a ray of the sun laugh and cough and sing!” He was talking about his latest success, the photophone, which he called his “greatest invention” shortly before his death. The photophone did not revolutionize the field of imaging, but an unintended effect Bell noticed while developing it did…

Lire la Suite

Catégories

Bridget Paulus August 21, 2018

If you’ve ever gone on a road trip, you know that it’s a bit of a pain — literally. Part of why your body aches after driving long distances is due to whole body vibration (WBV), which can cause fatigue; motion sickness; and, eventually, serious health problems. To design systems that reduce WBV for cars and other applications, engineers need an efficient way to visualize the effect of vibrations on the human body. That’s where simulation comes in.

Lire la Suite

Thomas Forrister August 17, 2018

“If you want to find the secrets of the universe, think in terms of energy, frequency, and vibration.” — Nikola Tesla Can we “see” sound? Not directly, but we can come close. By changing our perspective, we can learn a lot about the nature of acoustics. One way to observe acoustics phenomena is by studying standing waves in a solid medium known as a Chladni plate. A special technique creates patterns on the plate that reveal sound’s physical nature.

Lire la Suite

Bridget Paulus August 6, 2018

Efficient, cost effective, and environmentally friendly, friction stir welding (FSW) is useful for many applications. As the name implies, this process involves using friction to heat materials and then stirring them together. For optimal FSW performance, the generated heat has to be just the right temperature: Too high and the materials melt, weakening the weld; too little and the process is inefficient. Using the COMSOL® software, you can evaluate and improve heat transfer in the FSW process.

Lire la Suite

Thomas Forrister July 23, 2018

The main design goal for a loudspeaker array is to achieve wider sound coverage than a single speaker could provide. At the same time, the radiation pattern of the array must be indistinguishable from that of a single speaker. One method for producing radially distributed sound for multiple loudspeakers is with a Bessel panel. By analyzing a benchmark model of a Bessel panel system, engineers can optimize the design of loudspeaker arrays and other acoustics systems.

Lire la Suite

Catégories

Ravi Ranjan July 20, 2018

While working with rotating components, stability analysis is critical, as instability can lead to catastrophic failure. Rotating systems can lead to unstable responses due to asymmetrical inertia of the disk, asymmetrical stiffness of the shaft, or cross-coupling effects due to bearings. From the designer’s point of view, it’s important to ensure that the potentially unstable modes lie outside the operating range of the machine. Let’s explore how to predict the instability in rotor systems using the COMSOL Multiphysics® software.

Lire la Suite

Brianne Costa July 11, 2018

The word “turbocharged” is often used colloquially to describe increased speed, such as “turbocharged” coffee that energizes you faster than a regular cup of joe. Actual turbochargers also increase speed, but in combustion engines instead of your morning mug. Turbochargers operate via turbine-driven forced induction and often rely on hydrodynamic bearings for support. However, these bearings naturally include cross-bearing forces that cause negative damping and system failure. Using rotordynamics modeling, you can analyze how these forces affect turbocharger designs.

Lire la Suite


Catégories


Tags

1 2 3 36