## Meshing Considerations for Nonlinear Static Finite Element Problems

##### Walter Frei December 10, 2013

As part of our solver blog series we have discussed solving nonlinear static finite element problems, load ramping for improving convergence of nonlinear problems, and nonlinearity ramping for improving convergence of nonlinear problems. We have also introduced meshing considerations for linear static problems, as well as how to identify singularities and what to do about them when meshing. Building on these topics, we will now address how to prepare your mesh for efficiently solving nonlinear finite element problems.

Lire la Suite

### Meshing Your Geometry: When to Use the Various Element Types

##### Walter Frei November 4, 2013

In a previous blog entry, we introduced meshing considerations for linear static problems. One of the key concepts there was the idea of mesh convergence — as you refine the mesh, the solution will become more accurate. In this post, we will delve deeper into how to choose an appropriate mesh to start your mesh convergence studies for linear static finite element problems.

Lire la Suite

### How to Identify and Resolve Singularities in the Model when Meshing

##### Walter Frei October 29, 2013

In our previous post on Meshing Considerations for Linear Static Problems, we found that, in the limit of mesh refinement, the solution to the finite element model would converge toward the true solution. We also saw that adaptive mesh refinement could be used to generate a mesh that would have smaller elements in regions where the error was higher, rather than simply using smaller elements everywhere in the model. In this post, we will examine a couple of common pitfalls […]

Lire la Suite

### Meshing Considerations for Linear Static Problems

##### Walter Frei October 22, 2013

In this blog entry, we introduce meshing considerations for linear static finite element problems. This is the first in a series of postings on meshing techniques that is meant to provide guidance on how to approach the meshing of your finite element model with confidence.

Lire la Suite

### How to Implement a Mesh Refinement Study

##### Bethany Nine August 6, 2013

A couple of weeks ago, I led a webinar on postprocessing and visualization features in COMSOL Multiphysics. This webinar was very popular among COMSOL users, so I wanted to follow up with a blog post to highlight one of the important topics we covered — performing a mesh refinement study in COMSOL Multiphysics.

Lire la Suite

### How to 3D Print COMSOL Models

##### Daniel Smith June 25, 2013

Quite often we get asked the question “can I 3D print my COMSOL model?” Well, as of version 4.3b, the answer is “yes!” This is because it is now possible to export geometries and meshes as STL files, which is one of the standard file formats for 3D printing. This allows for rapid prototyping of designs; there is no need to outsource parts to machine shops. It is quite remarkable that you could conceive, simulate, optimize, and prototype a design […]

Lire la Suite

### Mesh Refinement for Wave Problems

##### GuestKyle Koppenhoefer May 24, 2013

This week we are happy to have Kyle Koppenhoefer of AltaSim Technologies as a guest blogger. As COMSOL Certified Consultants, AltaSim can share valuable insights into using the software — today on the topic of meshing wave problems. As part of our efforts to assist COMSOL users in performing high-quality analysis, we recently used our bi-monthly email to remind users to include twelve degrees of freedom per wavelength when meshing wave problems. This article builds on our previous advice. Wave-type […]

Lire la Suite

### Sweep Your Meshes with Ease

##### Andrew Griesmer May 9, 2013

Swept meshing is a geometry discretization technique available in COMSOL Multiphysics for specific types of geometries, including thin geometries, geometries with bends, and models with little or no variation in a specific direction. A swept mesh starts at a source boundary and sweeps along to a specified destination boundary. In previous versions of COMSOL Multiphysics, the source and destination boundaries generally needed to be specified by the user. However, in the latest release, COMSOL Multiphysics version 4.3b, the swept mesh […]

Lire la Suite

### Meshing and Optimization in Engineering Magazines

##### Andrew Griesmer March 21, 2013

Online engineering magazines, like Design World and Desktop Engineering, are great for anyone out there interested in emerging technologies. I especially liked a few recent articles: two in Design World’s “CAE Solutions” section and one in Desktop Engineering’s simulation section, detailing a couple of major topics important to finite element analysis, or FEA. First there is meshing, the foundation of FEA software. Second, there is optimization, which is all about maximizing efficiency and improving results. The key for any production […]

Lire la Suite

### Meshing: Cap off for Cap on

##### Niklas Rom October 11, 2012

Oftentimes when you are working with devices with internal fluid flow, the imported CAD design represents the vessel material. The inside is plainly void. This may leave you clueless since it is inside where you want to create a volume mesh for the flow equations. How can you solve this meshing problem in COMSOL?

Lire la Suite

1 2 3