Radiation conditions in Finite Elements Method
for finite inhomogeneous structures.
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To begin our work, we are interested in a 2D problem but with full acoustic
and electronic fields. The configuration is depicted in the figure 1. The frontier
T' divide space into two parts, the homogeneous one and the inhomogeneous
part (£2). The last one contains a finite network of transducers which is em-
bedded in a surrounding medium and lies on a backing. The inhomogeneous
region describes an area varying between x1; and x12 on xi-direction and oy
and x99 on xo-direction. All fields are calculated by dynamic piezo-electric fi-
nite elements method with a displacement-potential formulation. We suppose
Dirichlet boundary conditions for potential, i.e., the potential is specified. The
admittance is deduced from the charges firstly calculated.
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Figure 1: Sample of studied configurations: A finite network of acoustic trans-
ducers lied on a backing and embedded in surrounding medium. The w region
is demarcated by the light dashed-line. This line is called I'. The ) region
describes an inhomogeneous area.

To simplify the problem, we only apply radiation boundary conditions on
the z1-direction which becomes the new I'. So, I is depicted by thick black line
under the transducer in figure 1. this line coincides with x5 = 0.

From the principle of Hamilton and the variational approach, the stability
condition on I is defined here for our configuration[1] :

0*u; | 0Ty,
///Q (_p 5 + o, ) Su;dQ = //F Tijnjdudl, (1)

where p is the density, u; the displacement for the z;-direction for i € [1, 3]
and w4 is the electric potential, T' the stress tensor with Ty; the i component of




the electric displacement vector, du; the virtual increasing of the displacement
(or potential for i = 4) for the z;-direction and n; is the vector normal to the
x j-direction.

Now we write the radiation conditions on I':

+o00

Tijn; = / gijr (1 — T)njup(zy)dzy, (2)
— 0o

where g(z1) is the matrix of the green functions relating the stress tensor T' to

the displacements u. This relation allows us to determine the left part of the

equation (1)

Problem! The green functions cannot be easily defined. Indeed, It has been
shown the asymptotic behavior of the spectral Green function is proportional
to the slowness s1[2]. Whereas this properties does not disturb the calculation
of the Green function for periodic structures[3], the non-periodic case cannot
be calculate by this way and leads to a non-periodic Green function does not
converge (0o).

To avoid this trouble, we rewrite the boundary condition as a function of
the stress tensor[4]:

+oo
ui(zy) = / Gijr(z1 — 27) Tk (2] )pdat, (3)
— 00
where G(x1) is the matrix of the green functions relating the displacements u
to the strain tensor T'. In the chosen coordinates system, the normal to I' is ns.
So, equation (3) can be rewritten as following,
+oo
ui(z1) = Gija(@1 — o) Tj2 (@) )da). (4)

— 00
We can calculate all its elements from its Fourier transform :

+oo
Gijk = Gijk exp(—jk1x1)dk1 (5)
— 00
where G is the Fourier transform of G and k1 is the wave number for the x;-
direction. The wave number is a function of the pulsation w and the slowness
s1 for the zi-direction, k1 = wsy. thus the differential dk; becomes dk; = wds;.
If we consider the canonical concept the Fourier transform can be write as :
A f{ ik\S1
G, ) = Lo1) ®
w
where H is the part of the function related to G which do not depend on w.
Thus, the green function do not depend on the frequency. So, the equation (5)

becomes:
“+oo

Gijk(wz1) :/ H;jk(s1) exp(—jwzist)dsy (7)

— 00
The variational form of the equation (4) to calculate the stress tensor of the
equation (1):
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We substitute Gj;2 in (8) by its form obtained in (7):

T1=-+00 r1=400 z)=+00
/ (5uiui(x1)dx1 :/ (5ul /
r1=—00 T1=—00 ri=—o00

+oo
H;jo(s1) exp(—jw(xy — x})s1)ds1 Tja(x] )da day .
(9)

After some algebraic calculations, once can write the canonical spectral Green
tensor H;js(s1) for an isotropic medium :

— 00
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the density and Cgg and C11 two reduced components of the rigidity tensor for
an isotropic material. Thus, A is defined below:

A=(1+x3)" - 4xixe (11)

This spectral green function is holomorphe. In other words, this function is
defined and continue on the whole domain of integration. However, we must split
the Green function in several parts in order to improve the Fourier integration
time. We distinguish three parts: the asymptotic behavior when s; tends to
zero, all the different poles. First, its asymptotic behavior ﬁf;‘;2(sl) tends to 0
when s; tends to +o0o where :

. jsi  —s? 0
J 52 -2 0
IS5t (12)
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Last, there is only one pole for this function which is defined by the solution of
the equation A = 0. The slowness solution of this equation correspond to the
Rayleigh wave[5]. Indeed, we can write this equation in an other way :

C1a

33—8(3—1)(}%—1—0—):0 (13)
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where R = 2%2 This form was established by Lord Rayleigh in 1885. Moreover,
“1

there is only one positive solution s which can be approximated by the Viktorov
formula. In this way, we are able to calculate the Green function for s; = sft,
HE , = Hy—s(sF) = 6(sF) (where § is Dirac distribution). Thus the canonical
Green function can be written as a summation of three terms :

Hyea(s1) = H,(s1) + HZ o (51) + B, (14)

where H ,gOZ)Q(sl) is the Green function without the asymptotic and polar contri-
butions. For the asymptotical and polar contribution, we can easily calculate
the inverse Fourier transform :

exp jwsi X

Hily(wX)=A o

(15)



HE,(wX) = jg(l — 2H.(~wX)) (16)

In equation (15) and (16), HZ , and H°, are respectively the inverse Fourier
transforms of the polar and asymptotical contribution of the spectral Green
function, with A and B two matrices which depends on their coefficients. The
function H, is the Heaviside function. However, we still have to calculate the
inverse Fourier transform of H 150)2, ie, H 20:)2. Thus, we should obtain the total
inverse Fourier transform, Hy_o.

Thus, we can rewrite equation (9) with the new notation :

xr1=-+00 :v1:+oo :L’l +oo (0)
/ 5UZ‘Ui((II1)d.’E1 = / / / HZ]Q(Sl) + ..
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o HE(s1) + ﬁgQ) exp(—jw(z1 — )s1)ds1Tje (2} )da! dy.

Of course we can develop the same method to find the spectral Green tensor
for an other symmetry.
Applying the discretization process, equation (17) becomes :

/5uul (z1)dzy = / (HD)(s1) + By (s1) + HE) x

e TNe
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where N, is the number of elements, 7, is the number of nodes for element e
and Pf™ is the interpolation polynomial for m‘* node of element e (similarly
for Q;“ ). This way does not lead to an definite form of the Fourier transforms.
So, we must rewrite (18) to take into account first the calculation of the inverse
Fourier transforms of the Green tensor and secondly the convolution product.

/ duiwi(w1)dey = ZZM o / P (a5)

e=1m=1 Le

(ZNeiT(w)/ Q;eu)(iﬂi) (/; (HZ(;)Q)( D (19)

e=1 p=1

4 Hioj%(sl) + I:Ig2) exp(—jw(x] — xi)sl)dsl) dl"e) dr,,

if we replace the Green functions in equation (19) by their forms obtained
in equations (15) and (16), equation (19) becomes:
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iz/ Q)" @) (et —2) +---
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(20)

If we put G (cemps) = Jr. Jr. P (g T)Qgeu)(xi)Hijg(w(xf —x%))dldl ., we can

rewrite (20) in a simplier manner:

/(5u ui(xy)dry = Z Z Z Z du; (em)G eemp)p 6“ (21)

e=1m=1e=1 p=1

The left side of equation (21) leads to the same discretized form. Let

\Ilgjem”) = Jr. K™, (6“)6“d1“ Where K(em) and L(E‘L) are respectively the

polynomials related to duy; em) and u . So, equation (21) becomes:
Ne Ne me 7 Ne Ne 7Me  7e
Z 5’&2 em \Ij(eemﬂ) (GH) Z Z Z 5ui(em)G§§€mM)T;§5ﬂ)'
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(22)
By a simple way, equation (22) can be put in a matrix form:
< du; > (\IIU) {UJ} =< du; > (GU) {Tjg}, (23)

The finite element scheme defines the interaction between all the nodes of the
whole mesh. So, we must take of the redundancies in equation (22). For instance
in our case, the nt" node of the e'” is equivalent to the first one of the (e + 1)
element. So, all the interaction of these nodes must be summed. Thus, the
dimensions of matrices (¥;;) and (G,;) are ((Zi\[z‘l Nge) —Ne+1, (Ziv:1 Nge) —
N, + 1), ie the total number of nodes in the whole mesh.

The previous matrices can be filled from the sum of the matrices for each
couple of element e and e (These matrices have the same dimensions than the
total matrices ¥;; and Gj;):

0 --- 0 0 e 0 0 --- 0
0 0 0 0 0 0
0 o wleeth o glelnd g 0
L) )
Pee — yee : : . : - (24)
17 ¥ . . . . . )
0 0 \I,Z(;Gnel) . \IJE;EUeﬁe) 0 --- 0
0 0 0 0 0 0
0 0 0 0 0 0



and

0 0 0 e 0 0 0
0 --- 0 0 . 0 0 --- 0
0 0 @gleth .o gleclnd g
ij ij
Gi=1|: . : : R I (25)
0 --- 0 Gl(;fnel) . GE;”W’E) 0 --- 0
0 --- 0 0 . 0 0 --- 0
0 --- 0 0 . 0 0 --- 0
The sum of the sub matrices leads to the total matrices, ¥;; = Z]evzel ingl v
Ve Ne  vee : _ o (Ne=1)(Ne=1)nNe—171Ne—1)
and Gij = .59 > G¢5. In equation (26), we note A = Vi;
B— wl(;NE71)(N€71)(77N57171)77N671), C = Zblg‘](Nc*l)(Ne*l)(nNc—l71)("7N5—171)) and

D= w£§Nc*1)(Ne*1)ﬂNe—1(77Nc—1*1)) )
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The vectors (du;), (u;) and (T}j2) are respectively defined by equations (26), (27)
and (28):

<ou>=(Sul', o, ulTV Sulm p e, su, o, sul ),
(28)
T
{u;) = (uz”, R L L LI TR S usc"Ne) (29)
T
1— Nenn,
{Tjg} = (Tj1217 S 17312(77 1)’ lein + Tj2217 Tj222’ cee ,I’jQ N ) (30)

Also, whatever < du; >, we can write

{Tj2} = (Xij) {ui} (31)

where (le) = (G”)il(\I’”)

Thus, we can put the stress tensor 7' in the right part of the equation (1)
and found the variational unknown. So equation (1) can be written here in a
global manner:

< bu> [K —w?] {u} =< du> [X] {u}. (32)
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