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Abstract: Cantilever vibration in fluid 

environment is probably one of the most 

common Fluid Structure Interaction (FSI) 

problems in the field of Micro/Nano Electro 

Mechanical Systems (MEMS/NEMS). 

Usually the effect of fluid on cantilever 

oscillation is characterized in terms of mode 

resonance frequencies and quality factors (Qs), 

being those two physical quantities what is 

actually measured in the dynamic operation. 

In this work a new approach to the above FSI 

problem is proposed: modes Q factors and 

resonance frequencies in a viscous fluid 

environment are calculated through an 

eigenfrequency analysis thus avoiding time 

domain simulation as in all the previous works 

about a computational approach to the current 

problem. 

Besides a considerable reduction of the 

computational time, because of the frequency 

domain approach, our model demonstrates very 

high accuracy with respect both to analytical and 

experimental results. 
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1. Introduction 
 

The oscillation of an elastic structure in a fluid 

environment probably represents the most 

typical Fluid-Structure Interaction (FSI) 

problem.  

In the area of Micro Electro-Mechanical Systems 

(MEMS), such FSI problem is dominated by the 

presence of fluid viscosity: viscous damping, 

rather than other damping mechanisms such as 

acoustic radiation damping or internal structural 

damping [1], represents indeed the main 

dissipative process occurring during the 

oscillation of any microstructure in a fluid 

environment at ambient or close to ambient, 

pressures. 

Viscosity in the case of MEMS affects both Q 

factors (Qs) and resonance frequencies of the 

vibration modes of the structure, being those two 

physical quantities what is actually sensed in 

dynamic measurements. 

Cantilever based bio-sensors, currently being 

probably the most diffuse MEMS devices, 

should be designed, for instance, so that their 

mode Q factors are sufficiently high for 

operation in viscous fluids like water, the natural 

environment of biology. Their mass sensitivity is 

indeed directly connected to magnitude of their 

Qs thus forcing an accurate design of their 

geometry to maximize those quantities. To this 

aim theoretical models for this FSI problem are 

needed to accurately estimate the fluid effect on 

Q factors and resonance frequencies. 

The aim of this paper is therefore to show a new 

computational  approach to study the effect of a 

viscous fluid on the mode Q factors and 

resonance frequencies of a cantilever based 

device.  

It is worth to note that fluid is considered as 

unconfined therefore leading to the definition of 

free space damping. Nevertheless our method 

could be easily extended to simulate also squeeze 

damping [2], a particular type of fluid-induced 

dissipation which occurs when a structure 

vibrates very close to a surface. An example of 

squeeze film damping simulation is reported at 

the end of Section 4. 

 

1.1 Brief literature review  
 

Leaving aside those studies in which an 

analytical approach is combined with a 

computational one employing home-made 

numerical codes [3, 4, 5], the literature about a 

full computational approach to a FSI problem 

involving cantilevers can be firstly subdivided, 

according to the problem dimensionality, in two 

main categories: 2D and 3D simulations. 

Refs. [6, 7] contain an example of a bi-

dimensional approach: the cantilever is 

considered long and slender (i.e. l >> w, where l 

and w are respectively cantilever length and 

width) so that it is possible to simplify the 

analysis, restricting the attention to the vibration 

of the cantilever cross section in a two 

dimensional fluid domain. 

Such an approach, despite of the advantage of 

being certainly less time-consuming than a three-
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dimensional one, becomes less and less accurate 

with the increase of mode number or the 

reduction of the beam aspect ratio l/w since, in 

both cases, fluid flow ceases to posses a genuine 

2D nature. 

On the other hand, to the second category belong 

papers [8] and [9] in which the hypothesis about 

the bi-dimensionality of the fluid flow is relaxed 

and a fully coupled three-dimensional simulation 

is performed leading to high accurate results. 

The analysis of Lee et al.  [8] regards 

nevertheless only the first mode of vibration, 

while the work of Basak et al. [9], as involving 

higher harmonics and different mode types 

represents, to authors knowledge, the most 

complete work about a full computational 

approach to the FSI problem above. 

What it is worth to stress is that all the papers 

mentioned so far involve time-domain 

simulations. The FSI problem is solved by 

imposing either an initial displacement at the 

cantilever free end [7, 8] or an initial 

deformation [9] to the whole beam (in both cases 

the amplitude of oscillation should be carefully 

tuned to avoid non-linear effects) and then letting 

the system evolve over time. If the oscillation is 

underdamped and cross talk between vibration 

modes is negligible, the cantilever will behave 

like a simple damped harmonic oscillator thus 

experiencing a time decay of the amplitude of 

vibration. With a further curve fitting step it is 

possible to evaluate Q factor and resonance 

frequency of the particular mode under analysis. 

 

1.2 Motivation 

 

The procedure above mentioned suffers from 

some drawbacks: 

 

I. An initial displacement assigned just to the 

free end will excite almost only the first mode of 

vibration (since its shape is the one that mostly 

conforms to the resultant deformation). On the 

other hand, imposing to the cantilever an initial 

deformation proportional to a certain mode shape 

“in vacuum” [9] (i.e. calculated in a previous 

undamped eigenfrequency step) is acceptable 

insofar as the presence of the fluid does not 

affect that shape. This is strictly true just for the 

first mode of vibration since its only node
1
, being 

                                                           
1 A node is a point in which the modal displacement equals 
zero. 

located at the clamped end, does not change its 

position because of the fluid presence. All other 

higher modes, having nodes located in some 

position along the beam, are affected by the fluid 

presence both in terms of frequency and in terms 

of shape, since the latter fairly depends on node 

positions. This means that, except for the first 

mode, setting an initial displacement 

proportional to an undamped mode shape will 

produce a damped oscillation in time containing 

the contribution due to other modes besides the 

one under analysis fig. 1. 

This more and more true with the increase of the 

fluid damping level, since the effect of damping 

is to couple all modes of vibration [10]. In other 

words, even if both the mode shapes in vacuum 

and in fluid represent a set of orthogonal 

eigenvectors, the orthogonality is missed when 

considering one element of the former set respect 

to the members of the latter. Such modal cross 

talk complicates the fitting step downstream the 

time dependent analysis. A Prony analysis [11] is 

indeed needed to filter the “signal” of the mode 

under study from the “noise” due to the other 

modes. 

 

 
 
Figure 1. Example of modal cross talk: the time decay 

of the mode under analysis is affected by the "noise" 

due to another mode with lower frequency. 

 

II. Time domain simulations are usually highly 

expensive from a computational point of view. 

Moreover an accurate convergence study is 

needed to tune both the time step of the 

numerical scheme and the stop time of the 

calculation. 

III. The curve fitting step may potentially affect 

the overall accuracy of the procedure, since the 



errors due to the fit are superimposed to the ones 

due to the computational scheme. 

The above drawbacks encourage to move the 

attention to a frequency domain approach in 

which  mode properties in fluid environment are 

calculated through an eigenfrequency analysis 

including damping effects. The benefits of such 

an approach are evident: 

 

I. On equal mesh density, an eigenfrequency 

analysis is certainly less time consuming than a 

time domain one. 

II. The convergence study regards just the mesh 

density and not, as in the time domain approach, 

both mesh density and time parameters. 

III. Mode shapes and frequency in fluid are 

directly calculated so that no curve fitting step is 

needed. A possible source of inaccuracy is 

therefore eliminated. 

 

A damped fully coupled eigenfrequency 

analysis, on the other hand, is possible only if the 

equations of Fluid Dynamics could be converted 

in their frequency domain counterpart. Comsol 

Multiphysics offers the possibility of enter 

equations and customize them according to the 

specific problem under analysis. We exploited 

this feature in order to modify the standard 

equations contained in the fluidic module 

reformulating them as function of frequency. 

In this way an FSI eigenfrequency analysis is 

likely and all the benefits above can be fairly 

capitalized. 

 

2. Theory and Assumption 
 

When solving a three dimensional FSI problem 

involving a structure vibrating in a fluid great 

attention should be paid to contain the overall 

computational cost of the analysis. The 

numerical solution of Navier Stokes equations in 

the three dimensional case certainly represents a 

challenging task because of both the non-linear 

nature of such equations and the number of 

unknowns involved. The computational effort 

even increases if these equations are coupled to 

an other set of equations like structural 

mechanics. Simplifications therefore are not only 

desired but sometimes also necessary when the 

computational cost exceeds the computing 

resources. 

Luckily, the FSI problem above presents some 

features that allow simplifications while virtually 

preserving the accuracy. 

Considering the fluid as incompressible
2
 and 

neglecting any internal damping in the solid, the 

problem involves the simultaneous solution of 

the following set of equations: 
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where σ , 
sρ , u , represent stress tensor, 

density and solid displacement vector, while p , 

µ , v , fρ  represent pressure, viscosity, fluid 

velocity vector and density. 

If the amplitude of structure vibration is far 

smaller then any other length scale in the model, 

eq. (2a) can be linearized [10], i.e. the non-linear 

convective inertial term vv∇  could be dropped 

thus leading to Stokes equations. 

Secondly, by noting that fluid vorticity, defined 

as v×∇=ω , plays a significant role just in 

proximity of the vibrating structure
3
, it is 

possible to further simplify Stokes equations in 

the region of fluid domain sufficiently far from 

the cantilever. 

Setting 0=×∇= vω means that the velocity 

field satisfies the condition φ∇=v  where φ  

plays the role of a scalar velocity potential. 

Substituting the latter expression in eq. (2b) the 

following equation is obtained: 

 

                                                           
2 Fluid compressibility is significant only when the condition 

nL/c <<1, is violated. The quantities n, L, c are respectively 

the typical frequency of oscillation, the predominant length 

scale of the solid and the speed of sound in the fluid medium 

[12]. It is clear that  condition above mentioned in the field of 

MEMS usually holds. 
3 Since curl operator involves space derivatives of velocity, 

the magnitude of these quantities is expected to be high close 

to the vibrating structure, i.e. where fluid motion is 

pronounced, and progressively smaller when moving away 

from it. At an infinite distance from the cantilever, fluid 
should be indeed at rest. 
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On the other hand, using vector identities, eq. 

(2b) and the irrotational condition above, one 

has: 
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Using again the condition φ∇=v  and eq. (4), 

eq. (2a), after having dropped the gradient 

operator, reduces to the following: 
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In the region where it is possible to neglect fluid 

vorticity therefore eqs (2a, b) reduce respectively 

to eq. (5) and eq. (3). It is worth to notice that 

these latter equations are uncoupled and 

therefore pressure can be simply obtained once 

eq. (3) has been solved. 

To sum up, according to distance from the 

oscillating structure, fluid domain can be 

subdivided in two parts: a “near field” in which 

fluid is rotational and therefore eq. (2a) without 

the vv∇  term and eq. (2b) hold and a “far 

field” in which fluid is irrotational and eqs. (3, 5) 

hold. 

From a numerical point of view, the latter 

field is far less computationally expensive than 

the former since the only actual unknown is φ , 

being the pressure variable evaluable 

downstream the solution of eq. (3). 

 

3. Use of COMSOL Multiphysics 
 

Four Comsol Multiphysics modules were 

employed for solving the current FSI problem: 

 

• Solid, stress - strain    (smsld) 

• Stokes       (mmglf) 

• Laplace equation    (irr) 

• Moving mesh ALE    (ale) 

 

The first two application modes belong to the 

MEMS module, while the third and the forth 

ones are contained respectively in the Comsol 

Multiphysics PDE modes and Deformed mesh 

suites. Lastly, for coherence with the above 

theoretical treatment, the suffix of the Laplace 

modules has been changed in “irr” and its 

dependent variable renamed as “phi”. 

The geometry of the model, being symmetrical 

with respect to xz plane consists of a 

parallelepiped representing the solid domain (i.e. 

the cantilever) and two concentric half-spheres 

representing near and far field of the fluid 

domain (fig. 2); “smsld”, “mmglf” and “irr” 

application modes where assigned respectively to 

the three domains. 

 

 
 
Figure 2. Comsol Multiphysics geometrical model of 

the current FSI problem. 
 

It is worth to note that the role of the ALE 

module, in the present model, is noticeably 

different from the one usually encountered in FSI 

problems. Moving Mesh application mode is 

employed just to allow the contraction or 

expansion of both near and far field fluid domain 

geometries and meshes and not to account for the 

modification of the fluid domain shape due to the 

movement of the solid
4
. Thanks to this module, 

assigning the first three modules to ALE frame, 

it is possible, through a preliminary parametric 

analysis (see Appendix 7.1), to optimize the 

dimensions of the two fluid domains with respect 

to ones of the cantilever.  

Since all mesh point in the fluid volume are 

constrained to move without no motion relative 

to the underlying geometry, ALE module does 

not affect the overall computational cost. 

                                                           
4 According to the Section 2, cantilever is suppose to oscillate 

in a linear regime. Therefore, the change of the fluid domain 
shape due to its motion can be neglected. 



For what concerns the Solid stress-strain module, 

the analysis type field was set to “Damped 

eigenfrequency” so that the variable 

“jomega_smsld” becomes active. For the Stokes 

module first the transient analysis option was 

chosen and then the suffix “t” for time 

derivatives was substituted, in the “Equation 

System” field
5
, with the expression 

“*jomega_smsld”. 

In this way Stokes equations are converted in the 

frequency domain and their solution depends on 

the same frequency parameter of the structural 

mechanics module. 

Finally, in the “Subdomain expression” of the far 

field subdomain were written both the condition 

φ∇=v  and the frequency domain counterpart 

of eq.(5). 

The latter was implemented as: 

 

φρ ⋅⋅−=
f

smsldjomegairrp __   (6) 

 

The model contains two type of interfaces: solid-

near field and near field-far field. 

To the first kind of interface, the following 

boundary conditions where set: 

 

usmsldjomegav ⋅= _        (7a) 

 

and 

 

mmglfTsmsld
ext

f __ =       (7b) 

 

Eq. (7a) belongs to the Stokes module and 

represents the usual no-slip boundary condition 

concerning a moving wall, while eq. (7b) is 

contained in the Structural Mechanics module 

and states that the total fluid force per unit area 

acts as external action for the oscillating 

cantilever. 

This last condition, for accuracy reasons, is 

formulated through Lagrange multipliers [13] 

enabling non-ideal weak constraints in the 

Stokes application mode properties. 

In correspondence of the second kind of 

interfaces, the following boundary conditions 

were set: 

 

irrpp _=          (8a) 

                                                           
5 the “Equation system view” in the Model Settings was set 
to “weak”. 

and 
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Eq. (8a) is implemented in the Stokes module, 

while eq. (8b), being n the normal unit vector, is 

the standard Neumann condition for the Laplace 

equation module. 

Since the whole model is symmetrical with 

respect to xz plane (fig. 2), symmetry conditions 

are required both for the solid and the fluid 

domains. These are: 
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   (fluid far field)    (9c) 

 

To complete the set of boundary conditions, the 

clamp boundary condition 0=u  and the 

Dirichlet boundary condition are assigned 

respectively to the fixed end of the cantilever and 

to the external surface of the fluid far field. The 

latter, according to eq. (6), mimics an “open” 

condition since the value of the pressure is 

constrained to zero. 

 

The equations actually employed by the software 

are therefore the weak form of the following: 
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The solver simultaneously solves just for the 

weak forms of eqs. (10), (11) and the first one of 

eqs. (12) together with the boundary conditions 

reported above. 

Clearly the combination between the 

frequency domain approach and the 

simplifications in the physics allow to greatly 

contain the overall computational cost and 

simulation time. 

 

3.1 Comsol Multiphysics Simulations 

 

Resonance frequencies and Q factors of the 

modes of the cantilever vibrating in fluid 

environment are calculated through an 

eigenfrequency analysis using the Damped 

Eigenfrequency solver and Pardiso as linear 

system solver. Such an analysis occurs 

“downstream” a preliminary step involing fluid 

domains optimization (see Appendix 7.1). 

After discretization of the equations, being E, D, 

K, NF, N respectively the mass, damping, 

stiffness, constrain force and constrain matrices 

and U, U0 the solution vector and the 

linearization point, the eigensolver solves for the 

following quadratic eigenvalue problem [13]: 
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where λ is a complex eigenvalue representing a 

complex angular frequency. 

The resonance frequency and Q factor of each 

mode in fluid environment are respectively given 

by: 
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Eq.(15) has been implemented in the model as 

“Global Expression”. 

Fig. 3 contains the typical output of an 

eigenfrequency simulation, i.e., the normalized 

pressure jump across the cantilever. For each 

eigenmode, such a quantity is always 

antisymmetrical with respect to the xy plane. 

 
 
Figure 3. Plot of the normalized pressure jump across 

the cantilever. 

 

4. Results and discussion 

 

To assess the correctness of our model and the 

accuracy of the results we analyzed two 

structures: the first one is cantilever C2 of refs 

[9, 14], the second one is cantilever A of ref. 

[15]. While the first one vibrates in a free fluid, 

the second one oscillates near a surface and 

squeeze film damping has been showed [15] to 

dominate its dynamics in moderate vacuum.  

Figs. 4 and 5 show the comparison between the 

available analytical model [16] and our 

computational results for the first 4 modes of 

vibration in air environment of cantilever C2. 

Such a microstructure is made of crystal silicon
6
, 

its geometrical dimensions are l = 197 µm, w = 

29 µm, t = 2 µm [9, 14] and its first 4 undamped 

eigenfrequencies in vacuum, calculated through 

an eigenfrequency analysis, are 70.90 KHz, 

444.16 KHz, 1242.67 KHz, 2433.74 KHz. 

Air properties are ρ = 1.18 Kg/m
3
 , µ = 1.86·10

-5
 

Pa·s [9, 14]. 

Frequency shifts are calculated as: 

(ffluid - fvac)/ fvac·100. 

It is worth to note that the analytical model is 

exact for a beam of infinite length [16] vibrating 

in an incompressible fluid, even if its predictions 

are considered sufficiently accurate from aspect 

ratios l/w higher than 3.5 [16]. 

A very good agreement between simulation 

results and analytical data is observed: the 

maximum deviation between the two set of 
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results is about 6% for frequency shifts and 2.5% 

for Q factors. 

 

 
 

Figure 4. Comparison between analytical [16] and 

present work results about the frequency shift of the 

first 4 modes in air environment. The structure under 

analysis is cantilever C2 of ref. [9, 14]. 

 

 
 

Figure 5. Comparison between analytical [16] and 

present work results about the Q factors of the first 4 

modes in air environment. The structure under 

analysis is cantilever C2 of ref. [9, 14]. 

 

We believe that those deviations are mainly due 

to the geometrical assumptions in the analytical 

model. As reported in ref. [17], the error in 

assuming the cantilever length as infinite 

decreases with a power law of the mode number. 

This fact is well pointed out in fig. 4 where 

analytical data approach simulation results for 

increasing mode numbers. Other sources of 

discrepancy could be the unavoidable 

discretization errors due to the mesh and the fact 

that the actual implementation of the analytical 

model is based on the interpolation of data 

reported in a tabular form [16]. 

On the other hand, simulations as well as 

analytical results shows that fluid viscosity plays 

a less and less important role as mode number 

increases. Q values indeed grow with the 

increase of mode number while frequency shifts 

decrease with it, approaching the value they 

would have in an inviscid fluid, where just 

inertial effect are accounted. More rigorously 

speaking, the viscous layer thickness, given by  

δ = (2µ/ρfωf)
0.5 

where ωf  is the angular frequency 

of oscillation in fluid, progressively reduces with 

the increase of mode number, thus reducing the 

influence of viscosity. 

The choice of r (see Appendix 7.1), therefore 

seems more and more conservative as the mode 

number increases. 

Table 1 (a, b), reports instead a comparison 

between experimental [9, 14] (“e” superscript), 

analytical [16] (“a” superscript), and 

computational (subdivided in the ones of Basak 

et al. [9], with “B” superscript and the ones of 

the present work, “pw1,2” superscripts) results. 

The error is calculated with respect to the 

experimental values as (d-e)/e*100, where d 

stands for datum and e for the experimental 

value. 

In this case, we performed two types of 

simulations: in the first one (“pw1” superscript), 

the cantilever model is simply a parallelepiped 

rigidly clamped at one end, while in the other 

one (“pw2” superscript), also a part of the silicon 

support is modelled
7
 so that the actual stiffness is 

assigned to the clamp region (fig. 6). In this way 

simulations are expected to reproduce at best the 

experimental conditions. 

 

 
 
Figure 6. Geometrical Model of the silicon support of 

cantilever C2 [9, 14]. The clamp area is highlighted in 

blue. 

                                                           
7 The silicon support has been modelled in a separate 3D 

geometry (fig. 6), clamped at its bottom surface, and linked 
to the cantilever through “Identity Boundary Conditions”. 



Our calculations, in the case in which the effect 

of the finite stiffness of the clamp is included 

(“pw2”), shows the smallest errors with respect 

to the experimental data expect for what 

concerns the Q factor of the first mode, which 

has a value slightly lower than the one calculated 

considering just the cantilever. 

On the other hand, both the “pw1” and the 

“pw2” cases, confirm the high level of accuracy 

of our computational results. 

At last, figs. 7 and 8 show a comparison between 

the computational results. Our simulations are 

benchmarked with the ones of Basak et al. [9]. 

Analytical results [16] are reported as a guide. 

The fluid considered is water, whose properties 

are: ρ = 997 Kg/m
3
 , µ = 8.59·10

-4
 Pa·s [9, 14]. 

It is worth to note that while our results and 

analytical data are quite close to each other (the 

error never overcomes 5%), the computational 

results of ref. [9] noticeably differ from them, 

especially for what concerns frequency ratios 

(calulated as ffluid/fvacuum). A likely explanation of 

this deviation is the fact that, the method 

followed in ref. [9] involves time domain 

simulations which suffer from some drawbacks. 

As explained indeed in the Subsection 1.2, such 

type of simulations requires a post-processing 

step of results in which the curve “displacement 

vs. time”, obtained from the simulations, is fitted 

to a damped sinusoid. When the structure 

vibrates in a highly viscous fluid like water, the 

damping level could be so high that all modes 

are sensibly coupled and a Prony analysis [11] of 

results is needed to separate the signal of a 

particular mode from the noise due to the others. 

It follows that a simple fit with a damped 

sinusoid, as the one employed by Basak et al. 

[9], is not satisfying in those cases. 

Tabs. 2 (a, b) show, instead, the comparison 

between experimental [15], analytical [18] and 

computational results about cantilever A [15]. 

This is an electrostatically actuated crystal 

silicon microbeam vibrating close to a surface 

which, in turn, works as counter-electrode. 

Geometrical average dimensions are: l = 495 µm, 

w = 35 µm, t = 3.3 µm and g0 = 6.45 µm, where 

g0 represents the static gap height between the 

cantilever and the electrode. Air temperature is 

considered to be 20°C. 

Since squeeze film damping has been showed to 

be the predominant damping mechanism in the 

molecular regime [15], we decided to employ 

also the Comsol Multiphysics application mode 

“Solid, stress-strain with film Damping”, 

belonging to the MEMS module, and verify its 

predictions by realizing a dedicated model. This 

last consists of a parallelepiped clamped at one 

end and having squeeze film damping equations 

assigned to one of the its surfaces of area l·w. All 

other surfaces are considered as free. 
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data 
(KHz) 

err% 
data 

(KHz) 
err% 

data 
(KHz) 

err% 
data 

(KHz) 
err% 

data 
(KHz) 

err% 

1 69.87 - 70.61 1.06 70.49 0.89 70.49 0.89 69.52 -0.50 

2 438.5 - 443.50 1.14 441.6 0.71 442.45 0.90 436.23 -0.52 

 

Table 1a. Comparison between experimental (e) [9, 14], analytical (a) [16] and computational (B “Basak et al. [9]”, 

pw1, 2 “present work”) results about the first two mode resonance frequencies in air environment of cantilever C2 [9, 

14]. 

 

mode 
n. 

Q 
e
 Q 

a
 Q 

B
 Q 

pw1 
Q 

pw2
 

 data err% data err% data err% data err% data err% 

1 136 - 130.7 -3.89 144.8 6.47 131.4 -3.38 130.4 -4.12 

2 395 - 396.8 0.45 367 -7.09 397.7 0.68 394.4 -0.15 

 
Table 1b. Comparison between experimental (e) [9, 14], analytical (a) [16] and computational (B “Basak et al. [9]”, 

pw1, 2 “present work”) results about the first two mode Q factors  in air environment of cantilever C2 [9, 14]. 



 

   
 

Figure 7. Comparison between analytical [16], present 

work and Basak et al. [9] results about frequency ratios 

(calculated as ffluid/fvacuum) for the first four mode of 

cantilever C2 in water environment [9, 14]. 

Figure 8. Comparison between analytical [16], present 

work and Basak et al. [9] results for the first four mode Q 

factors of cantilever C2 in water environment [9, 14]. 

 

 

On the other hand, the complete FSI model has 

been obtained positioning the cantilever at a 

distance g0 from a surface to which wall 

boundary conditions
8
 were assigned (fig. 9). 
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r
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Figure 9. Detail of the 3D FSI model about a 

cantilever vibrating near a surface at distance g0 [15]. 

Only the near field is showed. 
 

Tab. 2a contains the results about first mode 

resonance frequencies, while tab. 2b the 

calculated values of Q factors. Superscipts “s1” 

and “s2” refer respectively to the full 3D FSI 

                                                           
8 Wall boundary condition for the far field portion of the fluid 

domain regards only the normal component of velocity and 
therefore it is equal to eq. 9c. 

computational model and the simplified squeeze 

film damping model. 

Tab. 2a shows that both the analytical model and 

the full 3D FSI computational model fail to 

predict the actual frequency shift, even if the 

agreement between them is a quite good. This is 

due to the fact that the experimental frequency 

shift is due to a superposition of the damping and 

“spring softening” effects, being the latter a 

phenomenon which occurs in electrostatically 

actuated microstrucures [15]. 

In Tab. 2b, on the contrary, is showed that the 

experimental Q factor, being far less affected by 

electrostatic effects, shows a good agreement 

both with the analytical model and our 

computational ones, even if the latter seem to be 

more accurate. 

For what concerns the squeeze film damping 

simulation, both Tabs. 2a and 2b put in evidence 

that such a model greatly underestimates the 

effect of fluid on the resonance properties: 

frequency shift and Q factor values appear to be 

the former about half and the latter about two 

times the other corresponding theoretical values. 

This means that, whenever viscosity effects are 

predominant (i.e. when fluid pressure has a value 

close to the ambient one) the squeeze film 

damping model is not appropriate to describe 

such an experimental case. 

 



f 
e
vac shift 

e
air f 

a
vac shift 

a
 air f 

s1
 vac shift 

s1 
air shift 

s2
 air 

data 
(KHz) 

data 
data 

(KHz) 
err % data err % 

data 
(KHz) 

err % data err % data err % 

18.33 -2.10 18.45 0.68 -0.74 -64.91 18.54 1.16 -1.00 -52.42 -0.07 -96.67 

 

Table 2a. Comparison between experimental (e) [15], analytical (a) [18] and computational results (subdivided in the 

ones calculates through the full 3D FSI model, “s1” superscript, and those obtained by the “Solid, stress-strain with 

film Damping” application mode, “s2” superscript) about the first mode resonance frequency of cantilever A [15]. 
 

 

Q 
e
air Q 

a
air Q 

s1
air Q 

s2
air 

 data err % data err % data err % 

5.7 6.0 5.1 5.5 -3.0 12.7 123.81 

 
Table 2b. Comparison between experimental (e) [15], 

analytical (a) [18] and computational results 

(subdivided in the ones calculates through the full 3D 

FSI model, “s1” superscript, and those obtained by the 

“Solid, stress-strain with film Damping” application 

mode, “s2” superscript) about the first mode Q factor 

of cantilever A [15]. 
 

For instance, this simplified model does not take 

in account the presence of the unbounded fluid 

on the other side of the cantilever, which 

certainly plays a role in the actual device 

operation within the viscous regime. 

 

5. Conclusions 
 

In this work a new approach to a FSI analysis of 

microcantilevers vibrating in fluid environment 

has been proposed. Modes Q factors and 

resonance frequencies in a viscous fluid are 

calculated through an eigenfrequency analysis 

thus avoiding time domain simulation. The 

frequency domain approach, combined with the 

subdivision of the fluid domain in a viscous and 

irrotational part, leads both to a strong reduction 

of the computational cost with respect to the time 

domain approach and to a high degree of 

accuracy of the results, as shown by the 

benchmark with available analytical and 

experimental data. 

We can conclude therefore that our FSI model 

appears to work in a very general context, being 

suitable also for those cases in which, even if 

there is a surface in proximity of the vibrating 

structure, the squeeze film damping model fails. 
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7. Appendix 

 
7.1 Parametric Analysis 
 

Before the eigenfrequency solution step, a 

parametric analysis involving also the ALE 

application mode and with the aim of scaling the 

geometry of the fluid domains, has been 

performed. 

The scaling has been enforced by means of a 

subdomain condition in the ALE module where 

domains contraction or expansion are function of 

a parameter called “disp”. 

By combining in a sequence, through the Solver 

Manager, the static and the eigenfrequency steps 

in a parametric sweep as function of “disp” 

parameter, it has been possible to study the 

variation of Q factors and resonant frequencies 

with respect to the change of the radius of both 

the near (r) and far field (R) fluid domain. The 

change of former allows to evaluate at what 

distance away from the cantilever, fluid can be 

considered as fairly irrotational, while by 

changing the latter, it is possible to evaluate the 

effect on results of the finite size of the fluid 

domain. 

Results were accepted whenever the following 

condition was satisfied: 

 

01.0

0

01 ≤
−

A

AA
         (16) 

 

where A can represent both Q factor and 

resonance frequency of the mode under analysis 

and subscripts 0 and 1 are referred respectively 

to the “base” value of r or R and to a larger value 

of them. 

It was found that the conditions lr 1.1≥ and 

lR 3≥  assure geometry-independent results, 

provided that the mesh is sufficiently dense. It is 

worth to note the first condition corresponds to 

)10( δOr ≈ which implies that viscous effects 

are accurately captured. 

Mesh density has been in turn tuned first 

checking the convergence of the mode 

frequencies in vacuum (eq. (17) was employed) 

and then setting a value of 1.27 in the field 

“Element Grow Rate” in the mesh subdomain 

settings for both the fluid domains. 

The resulting mesh, in the free fluid case, has a 

total number of elements which is about 35000, 

which corresponds to a total number of d.o.f. of 

about 170000. 




