

Simulation of Optical Properties of the Si/SiO₂/Al Interface at the Rear of Industrially Fabricated Si Solar Cells

Yang Yang, Pietro P. Altermatt

Motivation

Why do we develop "flat" texturing schemes?

- ✓ Industrially fabricated solar cells have pyramids at the front surface to enhance the optical path length of weakly absorbed rays (light trapping, confinement).
- ✓ Pyramid texture cannot be easily applied to thin (< 30 μm) Si cells.
- ✓ Scattering at rear (and front) are efficient for light trapping as well.

pyramids

rough surfaces

E. Yablonovitch, J. Opt. Soc. Am. 72, 899 (1982)

Task and Outline

- 1. Simulation model for reflection at planar and rough interfaces
- ✓ Definition of random surfaces, boundary conditions

- 2. Reflection near the critical incident angle in the Si/SiO₂/Al system
- ✓ Evanescent waves under frustrated total internal reflection (FTIR)

- 3. What kind of roughed schemes will foster scattering at the rear the most?
- ✓ Computation of angularly resolved reflection for various interfaces and materials.
- ✓ Nanoscale metal dots.
- 4. Conclusions

Equations to solve numerically

1. Maxwell equations

$$\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E} \qquad \nabla \cdot \vec{D} = \rho$$

$$\frac{\partial \vec{D}}{\partial t} = \nabla \times \vec{H} - \vec{J} \qquad \nabla \cdot \vec{B} = 0,$$

2. Coupled with materials equations

$$\vec{D} = \epsilon \vec{E} \qquad \vec{B} = \mu \vec{H} \qquad \vec{J} = \sigma \vec{E}$$

3. Harmonic formulation: $\vec{E}(\vec{r},t)=\vec{E}(\vec{r})e^{i\omega t}$ $\vec{H}(\vec{r},t)=\vec{H}(\vec{r})e^{i\omega t}$

$$\nabla \times (\mu^{-1}\nabla \times \vec{E}) - \omega^2 \epsilon_c \vec{E} = 0$$
$$\nabla \times (\epsilon_c^{-1}\nabla \times \vec{H}) - \omega^2 \mu \vec{H} = 0$$

Boundary conditions for planar interfaces

Floquet conditions: E(1)=E(2)e-ikd

Port condition, no excitation

excitation of TE or TM waves

$$E_{oz}(\text{or }H_{oz}) = \exp(-i*kly*y)$$

$$\beta = k1x$$

k3x =

Extraction of R

First, in background field (Si/Si/Si), the power outflow at the interface is taken as incident power P_i . Then, the power outflow in the Si/SiO2/Al model is taken as transmitted power P_t . The reflectance R at the interface is calculated by:

$$R = 1 - P_t/P_i$$

Simulated (lines) and analytical R (dots)

Boundary conditions for scattering (A)

Random surfaces and statistical angular distributions

Definition of Roughed surfaces

- ✓ Equidistant set of points in the y-direction with distance Δy
- Random set of x-values defined with normal (Gaussian) distribution with standard deviation σ
- ✓ Connect these points with straight lines to define the rough surface.

Method to get statistical angular distributions

- ✓ Any random number created by computer is pseudo random number.
- 10 simulations with different random surfaces with same standard deviation
- ✓ Average boundary integration values of these 10 simulations

Example of simulated reflectance

Boundary conditions for scattering (B)

Comsol "scattered field solve mode

Global plane wave instead of generated at boundary:

$$E_{gen} = E_{0,gen}e^{ik(\vec{k}\vec{r})} \in Volume$$

Eoiz (or Hoiz) = $\exp(-i*k0_rfweh*n1*(cos(alpha)*x+sin(alpha)*y))$

Comsol solves only for the scattered waves instead of all waves:

$$E_{sc}=E_{0,sc}e^{ik(\vec{n}\vec{r})}$$

Total field is sum of both:

$$E_{tot} = E_{0,sc}e^{ik(\vec{n}\vec{r})} + E_{gen}$$

"Boundary" condition: perfectly matched layer (PML)

Detection of time-averaged energy in segments of 5°

Scattering from Planar and roughed(sd50nm) surfaces

Si/Al system

Incident angle varies from 0° to 180°

Planar surface

Roughed surface

Scattering properties with and without metal dots

Scattering properties with and without metal dots

Conclusions

- 1. Simulation of planar surfaces by means of Floquet boundary condition gives perfect agreement with Fresnel theory.
- 2. Simulation of rough surfaces yield angular distribution of reflection at Si/Al or Si/SiO₂/Al interface.
- 3. An optimally diffuse reflection is achieved with a standard deviation for roughness of about 50nm.
- 4. Random distributed metal dots on Si/SiO₂ interface enhance scattering

Thank you!

