There are two models. Electrical current(ec) is used for solve the current distribution. PDE(c) is used for calculate the resistivity depended on current using analytic equation:

(E0*ec.normJ^40/super_jc^41)*rhon/(E0*ec.normJ^40/super_jc^41+rhon)+1e-10 This equation can describe the change of resistivity with current shown in the following figure.

When I set the Electric conductivity of superconducting material 1e20 S/m, I can get the expected result. The solution of PDE which describes the resistivity shows that around the circle the resistivity is increased as the current is higher than super_jc which is used in the above equation to decide the level of rapid jumping of resistivity.

 Materials thotspot superconducting resistor Electric Currents (ec) △u PDE (c) Ges h1 Study 1 Results 	Material Properties Basic Properties Electrochemistry Electromagnetic Models Solid Mechanics Piezoelectric Models Gas Models
	Material Contents Property Ne Value Unit Property grc
	 ✓ Relative permittivity ep…r 1 1 Basic ✓ Electric conductivity sigma 1e20 S/m Basic

Then I set the Electric conductivity of superconducting material 1/u S/m and use segregated solver. An error jump.

