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ABSTRACT

The calculation of ferromagnetic materials is a challeng-
ing task of high industrial and academic impact. The
dynamics of a magnetization distribution are governed
by the Landau-Lifshitz-Gilbert equations which are im-
plemented into COMSOL Multiphysics and solved for
assemblies of magnetic nanoparticles and thin film sys-
tems. We will discuss various simplifications of the full
set of equations for these particular cases and also ad-
dress the implementation of FEM-BEM methods for a
numerically efficient way to evaluate the magnetic stray
field without the employment of additional auxiliary do-
mains.
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1 INTRODUCTION

Modern hard drives allow for high data storage capaci-
ties. Recently, Seagate announced the release of a new
model with a storage density of 625 GByte per square
inch. In order to push this limit even further and to
design novel technologies with even higher data capac-
ities, a strong understanding of the driving dynamics
within these systems is required. The data storage pro-
cess is based on a physical phenomenon known as giant
magnetoresistance (GMR)-effect [1], [2].

In general, a magnetoresistive effect describes a de-
pendency of the electric resistance on the microscopic
magnetic configuration. A simple example where such
a behavior can be observed is shown in Figure 1. Two
ferromagnetic layers are separated by a non-magnetic
conducting spacer. The electric resistance of the device
depends on the relative orientation of the magnetization
distributions in each layer. A parallel alignment results
in a low electric resistance, an antiparallel configuration
in a high value. These two resistance states may be in-
terpreted as the bit states 0 and 1. For applications
in data storage devices, a hard switching characteris-
tic, i.e. a high coercive field, is required to guarantee
the stability of the magnetic state against thermal ef-
fects and, thus, providing a long life time of the stored
information.

Figure 1: Spintronic device consisting of multiple mag-
netic layers separated by a non-magnetic spacer. The
electric resistance of the device depends on the relative
orientation in upper and lower electrode and is (a) low
for a parallel alignment and (b) high for an antiparallel
configuration.

The origin of this effect can be found in a quan-
tum mechanic interaction between different spin states
which results in an increased electron scattering prob-
ability (and, therefore, increased electric resistance) for
antiparallel spin orientations. Therefore, this type of de-
vice is usually called a spintronic device. Nowadays, this
technology has found many applications beyond data
storage. Especially, the area of magnetoresistive sen-
sors is a rapidly growing field. However, if these sensors
are capable of detecting even very small fields and field
variations, a very soft response is required [3].

In order to reliably predict the characteristic behav-
ior of a magnetoresistive spintronic device and to tai-
lor its properties to specific functional tasks, we need
a framework for the numerical calculation of ferromag-
netic materials. In this work, we focus on the most
relevant cases: thin films and magnetic nanoparticles.
From a formal point of view, these systems are of re-
duced dimensionality and may be approximated by two-
and zero-dimensional arrays. However, the demagneti-
zation field does not lose its three-dimensional charac-
teristics. Depending on the type of system, we will ex-
plain different strategies to reduce the dimensionality of
the magnetic objects without neglecting the full three-
dimensional nature of the magnetic field.



Figure 2: (a) Dynamic behaviour of a magnetic moment
m in an external magnetic field H parallel to the z-axis
for different values of the damping constant α. The
green line corresponds to an undamped system, α = 0,
the path of the magnetic moment forms a closed loop.
(b) Trajectories of two interacting magnetic moments
and (c) trajectory of one magnetic moment interacting
with multiple moments ordered in a cubic lattice grid.

2 GOVERNING EQUATIONS

To find the dynamic equations that govern the magnetic
relaxation from an initial to the equilibrium state, let us
consider a magnetic moment vector m brought into an
external magnetic field H. The moment vector feels a
torque µ0m × H and, consequently, begins to precess
around the field axis. The vector orientation changes in
respect to time according to

dm

dt
= −γm×H (1)

with γ the gyromagnetic ratio. With a constant absolute
value |m|, we may visualize the trajectory of the mo-
ment as a curve on the surface of the three-dimensional
sphere with radius |m|. A solution of equation (1) is
shown in Figure 2(a), green line. During this precession,
the angle between magnetic vector and field axis remains
constant indicating a constant total energy −µ0m ·H.

On the microscale, various effects result in an effec-
tive damping of the rotation. All contributions of local
nature, such as phenomena related to electron scatter-
ing, can be summarized in an additional phenomenolog-
ical damping term

dm

dt
= −γm×H + αm× dm

dt
. (2)

The dimensionless damping parameter α may be com-
pared to the viscosity η in a viscous flow imposing a
resistance against the motion of the magnetic vector.
Since it summarizes a wide range of phenomena, its ac-
tual value is commonly unknown. Figure 2(a) shows
solutions of equation (2) for different values of α.

In principal, equation (2) is already the governing
law. However, we are not interested in a point dipole
but in continuous matter. Such matter may be under-
stood as an ensemble of magnetic dipoles where the
local dipole density or magnetization M = MSm̂ is a
vector of a constant length, the saturation magnetiza-
tion, which is a material property. In this continuum
model, the microscopic structure such as the coupling
between adjacent spin moments, can be taken into ac-
count by different contributions to an effective magnetic
field H → Heff . Commonly, the following decomposi-
tion is chosen

Heff = − 2A

µ0MS
∆m̂ +

1

µ0MS

δfani

δm̂
+ Hd + Hex. (3)

Not all of these terms may be immediately recognized
as magnetic fields. However, they all affect a magnetic
moment vector in the way that they result in a torque-
like contribution µ0m × H. The first summand refers
to magnetic exchange energy, an interatomic coupling
due to an overlap of the atomic orbitals (such as the
3d-orbitals for Iron, Cobalt or Nickel) which leads to a
torque density entailing a parallel alignment of contigu-
ous magnetic material. The exchange constant A may,
therefore, be regarded as a measure for the magnetic
stiffness of a material since the total energy is increased
whenever the magnetic distribution reaches a high cur-
vature ∆Mi.

Due to the microscopic crystallographic structure,
certain directions of the magnetic vector may be ener-
getically more favorable than other ones which is taken
into account by the second term referring to magne-
tocrystalline anisotropy energy. fani denotes the aniso-
tropy functional which depends on the polar coordinates
of the unit vector m̂. Energy functionals of first order
for uniaxial and cubic symmetries are given by

funi
ani = Ku

(
1−

〈
m̂, k̂

〉2
)

(4)

f cub
ani = Kc

(
m̂2

xm̂
2
y + m̂2

ym̂
2
z + m̂2

zm
2
x

)
, (5)

with Ku,Kc anisotropy constants and k̂ the direction of
the easy axis. Examples are shown in Figure 3.

The remaining two contributions refer to the sum
over all external magnetic fields Hex and the demag-
netization field Hd. The latter one follows the laws
of magnetostatics and may, therefore, be expressed as
Hd = −∇ϕ, with a magnetic scalar potential ϕ that
may be obtained as a solution of the inhomogeneous
Laplace equation

∆ϕ = ∇ ·M ∀r ∈ Rn (6)

∂ϕ

∂n̂
= n̂ ·M ∀r ∈ Γmag (7)

where Γmag denotes the interface between magnetic ob-
ject and the surrounding space or, in more general terms,



Figure 3: Various energy surfaces for different magne-
tocrystalline anisotropy scenarios, blue and red areas
correspond to energy minima (easy axes/planes) and
maxima (hard axes/planes), respectively. Uniaxial sym-
metries with either (a) an easy axis or (b) an easy plane,
cubic symmetries (c), (d) and combined cases (e), (f).

the interface between two objects of different magneti-
zation. This completes the set of equations for the con-
tinuous model. The system (2) to (7) is called Landau-
Lifshitz-equation [4].

In systems with a high aspect ratio, out-of-plane con-
tributions are usually small when the global configu-
ration is considered, ||m⊥||L2 ≈ 0, (exceptions can be
found in systems with a high perpendicular anisotropy,
see e.g. [5]). Under the additional constraint of a con-
stant length of the magnetization vector, the magnetic
state is described by the angular in-plane component.
Therefore, for this type of analysis, a circular colorcode
is employed for the visualization of the vector field where
each color indicates the local direction of m̂, Figure 4.

Out of these contributions, the demagnetization field
is of non-local nature, i.e., for the evaluation of equation
(3) at a certain space point, not only the physical prop-
erties at the respective point are required but also the
field values in the entire space need to be calculated.
As a rule of thumb, an additional auxiliary domain of
radius given by five times the geometrical size scale of
the investigated structure is sufficient to reach a numer-
ical error that may be neglected. All calculations pre-
sented in this work were obtained by the introduction of
such an auxiliary domain. More advanced methods such
the implementation of a hybrid FEM-BEM approach are
currently under consideration [6] and will be briefly in-
troduced in the outlook 4.4.

3 HOMOGENEOUSLY
MAGNETIZED NANOPARTICLES

In many applications of high technological relevance,
particular in the fields of MEMS- and NEMS-devices,
structures of high aspect ratio with one or several di-
mensions of the system on the nanoscale can be found.

Figure 4: Two-dimensional solution of an array of thin
magnetic layers. The colorcode (upper left) indicates
the local direction of the magnetization distribution. On
small scales, the magnetic distribution follows the shape
of the geometry as shown in the inset.

Below a certain size scale, finite size effects occur which
allow for the reduction of the three-dimensional system
to a lower dimensional approximation.

Magnetic nanoparticles are examples of systems with
all dimensions on the nanoscale. In this work, we do not
want to study their properties as individual objects but
discuss two very relevant applications where they form
the basic components within an ensemble of nanoparti-
cles: micron-sized magnetic multi-core beads and self-
assembled monolayers.

3.1 Elimination of spatial derivatives

The magnetic exchange coupling does not allow for devi-
ations of the magnetizaton direction on the dimensions
of the nanoparticles. Consequently, such particles are
homogeneously magnetized. If we further assume a per-
fectly spherical particle, the resulting external field is
given by the dipolar expression [7]

Hex =
MSVP

4µ0

(
(r · m̂)r

r5
− m̂

r3

)
(8)

while the demagnetization field inside the particle vol-
ume is constant and antiparallel to the magnetization
of the particle itself, Hd = − 1

3M. Therefore, we have
µ0M ×Hd = 0 and demagnetization contributions do
not need to be taken into account in this particular case.
If we consider a set N such particles, the external mag-
netic field that the i-th particle feels at its position ri is
given by the sum of expressions of the form (8)

Hex,i =
∑

rij<R

MS,jVP,j

4µ0

(
3(rij · m̂j)rij

r5
ij

− m̂

r3
ij

)
(9)

with rij = ri − rj and rij = |rij |. The cutoff value R is
set to 7.5× 〈RP〉, with 〈RP〉 the average particle radius
of the particle distribution according to [8].

Since the magnetization is constant along each indi-
vidual magnetic volume, the exchange contribution in



equation (3) is 0 and, therefore, equation (2) no longer
contains spatial derivatives. The original set of partial
differential equations has been simplified to a set of or-
dinary ones. If we consider N such particles, the set of
equations can be rewritten in matrix form as

(Id− αM)
∂m

∂t
= γMHeff (10)

with Id the identity mapping on R3N×3N , M the block
diagonal matrix

M =

 M1 0
. . .

0 MN


with Mn,ij = εijkm̂n,k, n = 1, ..., N , and

∂m

∂t
=

∂

∂t
(m̂x,1, m̂y,1, ..., m̂x,2, ...)

T

Heff = (Heff,x,1, Heff,y,1, ...,Heff,x,2, ...)
T .

In the subsequent sections, solutions of equation (10)
are presented.

3.2 Magnetic multi-core beads

Lab-on-a-chip or µTAS-technologies have evolved to an
important branch of MEMS-devices. Biomolecules pass
different channel geometries and undergo various chem-
ical procedures on a small microfluidic geometry. In
many situations, there is no direct way to monitor or
manipulate such molecules. Magnetic beads form an el-
egant way to label and handle them as they feel a force
in an inhomogeneous magnetic field [9] and may also
be tracked via their magnetic stray field [10]–[13]. Such
beads consist of magnetic nanoparticles embedded in
polymer matrix which is usually stabilized by a ligand
shell in order to prevent oxidation or other chemical re-
actions [14], Figure 5(a). Commonly, the nanocompos-
ites are not monodisperse but often follow a log-normal
distribution, as was also assumed for the example. We
distributed N = 100 nanospheres of a mean diameter of
12 nm and a standard deviation σ = 2 nm along a bead
volume with radius RS = 50 nm. The magnetic multi-
core bead is assumed to be magnetically saturated at
t = 0.

Figure 5(c) shows a solution of the magnetic relax-
ation process. As we can see, for t → ∞, the to-
tal magnetic moment goes to 0. These assemblies ex-
hibit a paramagnetic behavior. Even though individ-
ual nanoparticles are strongly coupled to each other via
their dipolar stray field, the ensemble reaches an equi-
librium state of no remanence magnetization. This type
of analysis is well suited for the calculation of relaxation
dynamics and the prediction of typical demagnetization
time constants τ due to dipolar particle coupling [6].

Figure 5: (a) Magnetic bead as an ensemble of magnetic
nanoparticles which have a size distribution according
to the log-normal function (b). (c) Relaxation of the
total magnetic moment m of a magnetic multi-core bead
which is brought into saturation at the time t = 0.

3.3 Self-assembled monolayers

Three-dimensional arrays of magnetic nanoparticles as
discussed in the previous section form an important com-
ponent in the design of micron-sized superparamagnetic
beads. However, a much higher relevance can be found
in self-assembled monolayers of magnetic nanocrystal-
ites. Depending on the preparation method, various
spatial symmetries can be obtained. An example for
particles assembled in a hexagonal structure is shown in
Figure 6(a). The absence of exchange coupling results in
a very high curvature of the magnetic distribution which
minimizes the magnetic field energy of the ensemble.

In contrast to the three-dimensional configurations,
these structures have high coercive field which can ma-
nipulated by a change of the properties of the nano
components themselves. As shown in Figure 6(b), the
introduction of a uniaxial anisotropy with a randomly
distributed easy axis vector k̂ results in a significant in-
crease of the hysteretic response. Another interesting
feature can be found in anisotropic response functions.
Figure 6(c) shows the susceptibility calculated from the
virgin curves of different assemblies. For more informa-
tion on these types of devices and their promising fields
of applications, see the article Magnetic Nanoparticles
for Novel Granular Spintronic Devices [15] in these con-
ference proceedings.

Here, we would like to make a short but very helpful
sidenote. It is often asked, how to implement a fer-
romagnetic permeability µ on a continuum by means of
an inline function into COMSOL Multiphysics. Well, we



Figure 6: Magnetic properties of a two-dimensional en-
semble of hexagonally ordered magnetic nanoparticles.
(a) Magnetic equilibrium state, (b) magnetic response
functions for isotropic and uniaxial magnetocrystalline
anisotropy, (c) susceptibility of virgin curves in depen-
dency of the in-plane magnetic field component.

do not know a good way to use inline functions for this
matter, but the implementation of such non-linear hys-
teretic response works very efficiently by introduction of
a set of equations of type (10) for a small number of N .
The evaluation takes virtually no calculation time since
we only add 2N degrees of freedom and the characteris-
tic behavior of the hysteresis loop can easily by modified
by changing parameters such as the dipole positions r
or the saturation magnetization MS.

4 A THIN FILM APPROACH

For the analysis of magnetic nanoparticles, it was pos-
sible to employ an analytic solution for the calculation
of the magnetic stray field. Now, it would not be ex-
actly correct to say that this is not at all possible for
thin magnetic layers as we will explain in section 4.4.
However, in order to reach a better understanding of
these systems, we will begin our discussion with a more
intuitive approach.

4.1 Hybrid 2D-/3D-modeling

Similar as exchange coupling entailed a constant magne-
tization along the volume of a magnetic nanoparticle, a
film thickness of only a few nanometers allows for the ap-
proximation of the magnetization by a two-dimensional
distribution M(r) = M(x, y). Unfortunately, such a
reduction of the system dimensionality is only possible
for the magnetic configuration but not for the magnetic
stray field. The reason for this can be easily understood:
if we recast the entire system into a two-dimensional

Figure 7: Details on the solution process. (a) Due
to its nature, the magnetic stray field is calcualted in
a three-dimensional frame and mapped into the two-
dimensional layer frame via the projection mapping Φ.
(b) Consistent initial values are obtained by starting
from a linearly coupled model.

framework, the setup would be symmetric along the z-
axis. By this simplification, instead of a thin film, we
would analyse the behavior of an infinitely long cuboid
under the assumption of a magnetic distribution which
does not change in the direction of the symmetry axis.
This is exactly the opposite of what we originally in-
tended to analyse. Such a simplification usually results
in a higher number of magnetic domains because the
demagnetization field is overestimated in comparison to
the exchange contribution.

Therefore, we need to work in two different geome-
try frames: a three-dimensional frame Γ3 for the calcu-
lation of the magnetic potential and a two-dimensional
one Γ2 where we solve for the magnetic degrees of free-
dom. The frames are connected by a set of extrusion
mappings Φi : Γ3 → Γ2, (x, y, z) 7→ (x, y) with inverse
mappings Φ−1

i : Γ2 → Γ3, (x, y) 7→ (x, y, z), for every z
such that (x, y, z) can be found in the i-th layer. Thus,
the magnetization m̂ in the two-dimensional frame is
projected onto the three-dimensional layers via m̂ ◦ Φi,
whereas the potential in the two-dimensional coordinate
system is given by ϕ ◦ Φ−1

i .

A schematic representation of the modeling frame
is presented in Figure 7, the mappings Φ and Φ−1

i are
implemented via Extrusion coupling variables. It
should be pointed out that this general formulation of
the mapping Φ is compatible with ALE-formalisms and,
therefore, it may be easily extended to thin films under
stress if additional magnetostrictive contributions need
to be taken into account.



Figure 8: Magnetic multi layer system and resulting
magnetic equilibrium states. (a) Magnetic ring, the
initial configuration parallel to the x-axis (turquoise)
results in a complex magnetic microstructure in mini-
mum and maximum x-regions. (b) Magnetic trilayer,
the magnetic equilibrium state minimizes the stray field
energy.

4.2 Solver settings

The straight forward implemention of equations (2) to
(7) will usually result in the solver error: Failed to

find consistent initial values, and the solver will
be aborted directly at t=0. Therefore, in a first step, we
need to generate a valid initial configuration. A very
good strategy is a sequential presolver step as shown in
Figure 7 which assumes only a linear instead of a non-
linear coupling between the two frames for very small
time steps: for an arbitrary magnetization distribution,
we calculate the magnetic field in the three-dimensional
frame. Afterwards, we let the magnetic configuration re-
lax for a small time span in this fixed field configuration.
Typically, 1 to 10 ps is a good guess but may depend on
the choices of different material parameters. The static
field solution together with the end state of the mag-
netic distribution commonly results in consistent initial
values.

4.3 Ferromagnetic thin film arrays

Typical solutions for ferromagnetic thin film systems are
shown in Figure 8. Subplot (a) shows the equilibrium
state of a magnetic ring. Inner and outer radius are
chosen 300 and 500 nm respectively, magnetic parame-
ters are set to MS = 1000 kA/m and A = 10−12 J/m.

Figure 9: (a) Calculated magnetic field of a homoge-
neous magnetic sphere by the FEM-BEM approach. (b)
Sparsity plots of the resulting system matrices for FEM-
and hybrid approach.

The initial state was chosen as m̂ = x̂ which results in
magnetic domain structures in maximum and minimum
x-regions.

The second example shows a magnetic trilayer with
square-shaped layers. The side length is set to 100 nm,
magnetization is chosen as MS = 1000 kA/m and ex-
change constant from top to bottom as 2 · 10−12, 10−11

and 10−11 J/m, respectively. The soft magnetic mater
in the top layer allows for the formation of a full vor-
tex state. Center and bottom are magnetically to stiff
and, therefore, reach a state of antiparallel alignment,
to minimize the magnetic stray field.

4.4 Outlook: Hybrid FEM-BEM
method

The calculation of the magnetic potential in a three-
dimensional frame as described above introduces a large
amount of degrees of freedom in the surronding space of
the magnetic object that we are not really interested
in. These degrees of freedom can be eliminated in an
FEM-BEM framework (Finite and Boundary Element
Method) which was originally introduced by Fredkin
and Koehler [16]. Figure 9(a) shows a solution of the
stray field of a homogeneously magnetized sphere in an
arbitrary domain. Even though the domain size does
not meet the rule of thumb and shows a lot of features
along its boundaries, the solution is not affected.

This accuracy of the solution is bought at a cost.
Figure 9 shows a sparsity plot of the system matrix for
the pure FEM- and for the hybrid FEM-BEM approach.
Even though there are far less degrees of freedom to be
solved for, the stiffness matrix is a lot denser. This loss
of sparsity increases assembly and solving times as well
as memory requirements. Whether this approach may



help to increase the performance of our implementation
is still to be analyzed.

A rigid introduction to this method and a discussion
about advantages and disadvantages can be found in the
article Hybrid FEM-BEM approach for two- and three-
dimensional open boundary magnetostatic problems [6].

CONCLUSION

We have successfully implemented a micromagnetic ap-
plication mode for the analysis of arrays of ferromag-
netic thin films and nanoparticles into COMSOL Mul-
tiphysics. In particular, we developed a mixed 2D/3D-
framework for the accurate calculation of systems with a
high aspect ratio and were able to simplify the original
(partial) Landau-Lifshitz-Gilbert equations to a set of
ordinary equations for assemblies of magnetic nanopar-
ticles. Also, advanced modeling techniques such as the
FEM-BEM coupling have been tested in COMSOL Mul-
tiphysics. However, the introduction of boundary inte-
grals result in an increased density of the stiffness matrix
which leads to longer solving times and higher memory
requirements. Future tests will need to show whether
the highly specialized sparse matrix solvers can be ad-
justed to this set of equations or the proposed 2D/3D-
frame will remain the method of choice.

With magnetic thin flims and nanoparticles forming
the most relevant components in novel spintronic de-
vices, we believe we have developed a powerful tool for
the guidance of future technological developments and
the adjustment of a wide range of nanoscaled systems
to specified functional tasks.
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