La Bibliothèque de Modèles présente des modèles construits avec COMSOL Multiphysics pour la simulation d'une très grande variété d'applications, dans les domaines électrique, mécanique, fluidique et chimique. Vous pouvez télécharger ces modèles résolus avec leur documentation détaillée, notamment les instructions de construction pas à pas, et vous en servir comme point de départ de votre travail de simulation. Utilisez l'outil de recherche rapide pour trouver les modèles correspondant à votre domaine d'intérêt, et connectez vous avec votre compte COMSOL Access, associé à une licence COMSOL, afin de télécharger les fichiers modèles.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Lithium-Ion Battery with Multiple Intercalating Electrode Materials

Lithium-ion batteries can have multiple active materials in both the positive and negative electrodes. For example, the positive electrode can have a mix of active materials such as transition metal oxides, layered metal oxides, olivines etc. These materials can have different design properties (volume fraction, particle size), thermodynamic properties (open circuit voltage), transport ...

Species Transport in the Gas Diffusion Layers of a PEM

This example focuses on the species transport within the gas diffusion layers (GDLs) of a proton exchange membrane (PEM) fuel cell. The geometry models a cell with two adjacent flow channels of different pressures, a situation that may occur in a cell with serpentine flow channels, or in a cell using an interdigitated flow field design. The model uses current balances, mass transport equations ...

1D Lithium-Ion Battery Model for Internal Resistance and Voltage Loss Determination

This tutorial digs deeper into the investigation of rate capability in a battery and shows how the *Lithium-Ion Battery* interface is an excellent modeling tool for doing this. The rate capability is studied in terms of polarization (voltage loss) or the internal resistance causing this loss. A typical high current pulse test, namely a Hybrid Pulse Power Characterization (HPPC) test, is ...

Heterogeneous Lithium-Ion Battery Model

This model describes the behavior of a lithium-ion battery unit cell modeled using an idealized three-dimensional geometry. The geometry mimics the structural details in the porous electrodes. Such models are referred to as heterogeneous models. The modeling approach for heterogeneous models differs from typical battery models, such as the Newman model. In homogeneous models, averaged ...

Liquid-Cooled Lithium-Ion Battery Pack

This model simulates a temperature profile in a number of cells and cooling fins in a liquid-cooled battery pack. The model solves in 3D and for an operational point during a load cycle. A full 1D electrochemical model for the lithium battery calculates the average heat source.

1D Lithium-Ion Battery Model for Power vs Energy Evaluation

A battery’s possible energy and power outputs are crucial to consider when deciding in which type of device it can be used. A cell with high rate capability is able to generate a considerable amount of power, that is, it suffers from little polarization (voltage loss) even at high current loads. In contrast, a low rate-capability cell has the opposite behavior. The former type is often denoted ...

1D Lithium-Ion Battery Drive-Cycle Monitoring

This application shows how a battery cell exposed to a hybrid electric vehicle drive cycle can be investigated with the Lithium-Ion Battery interface in COMSOL. This model predicts the battery behavior to make comparisons of the monitored properties. They can be used to understand the battery's behavior during the cycle better, since the model includes can calculate more than is measurable, for ...

Primary Current Distribution in a Lead-Acid Battery Grid Electrode

This 3D model example demonstrates the use of the Primary Current Distribution interface for modeling current distributions in electrochemical cells. In primary current distribution, the potential losses due to electrode kinetics and mass transport are assumed to be negligible, and ohmic losses are govern the current distribution in the cell. Here you investigate primary current distribution in ...

1D Lithium-Ion Battery Model for Determination of Optimal Battery Usage and Design

This application example is useful for investigation of the following: Voltage, polarization (voltage drop), internal resistance, state-of-charge (SOC), and rate capability, in lithium-ion batteries under isothermal conditions. Some of the listed properties play an important role in battery management systems (BMS) in, for instance, electric and hybrid electric vehicles (see figure). The more ...

Soluble Lead-Acid Redox Flow Battery

In a redox flow battery electrochemical energy is stored as redox couples in the electrolyte, which is stored in tanks outside the electrochemical cell. During operation, electrolyte is pumped through the cell and, due to the electrochemical reactions, the individual concentrations of the active species in the electrolyte are changed. The state of charge of the flow battery is determined by ...