

Presentation on

3-D Design, Electro-Thermal Simulation and Geometrical Optimization of spiral Platinum Micro-heaters for Low Power Gas sensing applications using COMSOL 4.1

Vineet Bansal, Anil Gurjar, B. Prasad, Dinesh Kumar

NPMASS Design center Electronic Science Department Kurukshetra University

Contents

- MOX Gas Sensor
- Materials for Micro-heater's
- Gas sensor's
- COMSOL 4.1 as a tool
- Micro-heater Patterns
- Results
- References

A Integrated MOX gas sensor

Why Gas sensor's

- Gas sensors are the devices which determine the information about the gas present and its concentration in an ambient gas atmosphere.
- Miniaturized gas sensors with a low power consumption for the detection of various gases such as CO, CH4 and H2 is very essential for a wide range of applications.
- The Micro-heater is the main component in resistive gas sensors to make the sensing layer more sensitive and selective. Unfortunately which is also a most power consuming part in gas sensors.
- Hence perfect design and fabrication of Micro-heater is an important aspect.

What are Micro-heaters

- Micro heaters in gas sensors are basically resistive beams which can attain a temperature of 300C - 500C due to joule heating, when sufficient voltage is applied across the ends.
- The design of micro-heaters is optimized for... low power consumption low thermal expansion
 Better Temperature uniformity across the device Enhanced thermal isolation from the surroundings

Materials For Micro-heaters

Poly-silicon

Low Temperature Highest Thermal Expansion Established Fabrication

cheap

Platinum

High Temperature Average thermal Expansion Hard to Fabricate

Costliest

Materials

Tungsten

Very High Temperature Low Thermal Expansion Ease of Fabrication Cheap

Gold

Highest Temperature Low thermal Expansion Hard to Process Costly

Electro Thermal Mathematical modelling of microheater Using Comsol 4.1

• The Joule Heating Model node in **COMSOL** uses the following version of the heat equation as the mathematical model for heat transfer in solids:

$\rho Cp - \Delta (k \cdot \Delta T) = Q$

- The equations have been solved under Neumann, and mixed boundary conditions numerically using the Finite Element Method (FEM) when the Electro-Thermal module is selected in COMSOL.
- The generated resistive heat Q is proportional to the square of the magnitude of the electric current density J.
- In our Simulations we assume the temperature and potential gradients in the z-direction (perpendicular to the heater plane) are equal in comparison to the gradients in x-y plane. There by taking the problems to three dimensions. This is a reasonable assumption given the relative dimensions of the structure; the thickness being much smaller than the length or width. Also Fine meshing is used for simulation.

Spiral Platinum Micro-heater

Double spiral Shaped Micro-heater

S-shaped Micro-heater

Heat dissipation in Substrate

Spiral Bridged at 2V

Spiral Micro-heater with Cavity

Gas sensor at operating Temp.

A Complete Heater at 2V

An 4×4array of Micro-heaters

Power consumption Vs Temp.

Transient Response

Transient Measurements - Small Heater

References

- [1] Moldovan O. Nedelcu, U. Kaufmann, HJ Ritzhaupt-Kleissl, S. Dimov, P. Petkov, R.Dorey, K. Persson, D. Gomez, P. Johander "Mixed technologies for gas sensors microfabrication", Proceedings 4M Conference on Multi Material Micro Manufacture 29 june-1 July 2005 Karlsruhe pp 211-z1217.
- [2] D. Briand, S. Colin, A. Gangadharaiah, E. Vela, P. Dubois, L. Thiery, N.F. de Rooij, Sens. Actuat. A: Phys., 132, 317-324 (2006)
- [3]G. Velmathi and S. Mohan, "Design, Fabrication and testing of Microheater with Uniform thermal distribution and low power consumption for gas sensor", *Proceedings ISSS Conference*, (2009)
- [4] T. Zawada, A. Dziedzic and L.J Golonka, "Heat Sources for Thick-Film and LTCC Thermal Microsystems" 14th European Microelectronic sand Packaging & Exhibition, Friedrichshafen Germany 23-25 June 2003
- [5] S. Semancik, R.E Cavicchi, M.C Wheeler, J.E Tiffany, G.E Poirier, R.M Walton, J.S Suehle, B.Panchapakesan and D.L DeVoe, "Microhotplate platforms for Chemical Sensor Research" Sensor and Actuators p 579-591 B77 (2001)
- [6] Welch, "Micro-Machined Thin Film Hydrogen Gas Sensors" Proceedings 2002 US DOE Hydrogen Program Review NREL/CP-610-32405,2005
- [7] Wiesmann and A. Sebastian. Dynamics of silicon microheaters: Modeling an experimental identification. In *Proceedings of the IEEE MEMS Conference*, pages 182–185, February 2006
- [8] Elmi, S, Zampolli, E. Cozzani, M. Passini, G. Pizzochero, G.C.Cardinali, and M. Severi, "Ultra low power MOX sensors with ppb-level VOC detection capabilities," *IEEE Sensor 2007*, USA, pp. 170-173, Oct.2007.
- [10] Julian W Gardner, Philip N. Bartlet "History of Electronic noses", sensors and actuators 18-19 (1994).

Thanks