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Abstract: Objective  of  this  contribution  is  to 
show  how  to  implement  the  Mild  Slope 
Equations  with  Comsol  Multiphysics.  These 
equations  are  commonly  used  to  study  the 
propagation  of  waves  in  harbors.   Some 
interesting features are presented, namely the use 
of  weak  terms  (used  for  the  modelling  of  the 
source term);  the evaluation of a smooth phase 
gradient from the complex dependent variable; a 
robust  method  to  solve  the  wave  dispersion 
relation with sufficient accuracy and continuity. 
As  example  application,  the  wave  field  that 
would  occur  in  Casal  Borsetti  Marina  (RA) 
accounting for a fictitious northward extension of 
the actual pears is shown. 

Keywords:  Mild  Slope  Equations,  Wave 
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1. Introduction

Preliminary  port  and  harbors  design  is 
frequently  based  on  a  numerical  study  of  the 
wave  propagation  within  the  protected  area. 
Significant excursions of the free surface in the 
harbour can be induced by external waves with 
period  ranging  from  a  few  minutes  to  several 
hours.  If the forcing lasts sufficiently long, the 
excited natural oscillations may cause failure of 
the  mooring  systems,  fenders,  berths,  etc., 
resulting in  heavy damage of  to  the boats  and 
harbour structures.

Linear  wave  propagation  in  a  gradually 
varying  bottom  and  rapid  horizontal  variation 
due to reflection and diffraction is usually solved 
by means of the 2DH linear elliptic Mild Slope 
Equations (MSE) derived by Berkhoff (1972).

These equations are  an enhancement  of the 
Helmoltz Equations insofar as they account for 
the change of the wavenumber (k) with depth (h), 
usually  in  absence  of  currents.   Of  course  the 
MSE  degenerate  into  the  Helmoltz  Eq.  for 
constant depth.

The  term  "mild"  refers  to  an  expansion  in 
terms of a small parameter µ defined by (see for 
instance Mei, 1989):
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which relates the horizontal length scale of depth 
variation  the  wavelength.   The  solution  of  the 
MSE can be considered valid up to O(µ).  Better 
approximations  (i.e.  to  the  order  O(µ2))  of  the 
MSE are  given  by Porter  and  Staziger  (1995). 
Inclusion of currents, dissipations due to bottom 
friction  and  breakers  can  be  accounted  for  as 
shown by  Dingemans  (1997).   These  common 
features will not be addressed here for the sake 
of simplicity.

For  practical  problems,  where  the  bed 
topography  is  not  simple,  these  equations  are 
solved  numerically.   Finite  Element  Methods, 
which are typically associated to flexible meshes, 
appear suited to be applied in coastal areas, i.e. 
where part of the domain is very regular and can 
be  described  by  large  elements,  whereas  other 
parts usually need to be greatly refined.

Objective of this contribution is to show how 
to  implement  the  MSE  with  Comsol 
Multiphysics in order to study the propagation of 
waves around structures. 

In  order  to  solve the  MSE, the generic  FE 
modeler shall face four difficulties (in ascending 
order): 

1) solve the water wave dispersion, which is 
an implicit equation on the wave number; 

2) define a complex dependent variable; 
3)  input  waves  with  the  method  of  the 

internal wave generation; 
4) define boundary condition on absorbing or 

partially reflective structures.
Whereas  the  first  problem  is  trivial  for 

coastal  engineers  and  the  second  is  trivial  for 
Comsol  Multiphysics  programmers,  since  there 
is no actual difference in the implementation of 
real  or  complex  variables,  the  other  problems 
may not be easy to solve without guidelines.  For 
this purpose, the methods proposed by Bellotti et 
al.  (2003)  and  Beltrami  et  al.  (2001)  are 
suggested,  and  details  on  their  implementation 
are given.

This note is structured as follows: in Section 
2 the boundary value problem is described and 
the method proposed by Bellotti et al. (2003) is 
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set  up  in  terms  suited  to  the  Comsol 
Multiphysics modeler. In Section 3 the model is 
validated against some benchmarks.  Eventually, 
in  Section  4,  the  fictitious  harbour  in  Casal 
Borsetti  (RA),  as  designed  by  students  of  the 
course of Harbour Construction, held by Prof. A. 
Lamberti, is analysed.

2. The Model

The MSE, given  in  Subsection 2.1,  are  elliptic 
and  therefore  appropriate  values  are  required 
along the whole domain boundary. Unfortunately 
in  some  cases  the  boundary  conditions  also 
depend on the solution.  

Parabolic  approximations  of  the  MSE  are 
easier to solve with this regard, but they are not 
suited for application to harbour design. Indeed 
reflection is an essential feature to model in order 
to  give  a  realistic  response  of  the  harbour  to 
incident  waves.  Similarly,  partial  reflection, 
typically induced by rubble mound breakwaters, 
needs to be accounted for.  

In  Subsection  2.2,  the  simple  method 
suggested  by Beltrami  et  al.  (2001)  to  account 
for partial reflection is presented. The method is 
based  on  an  iterative  approach,  which  is  a 
standard way to add fancy features to the elliptic 
equations.

In Subsection 2.3 the method by Bellotti  et 
al.  (2003)  is  used  to  generate  waves  from the 
interior of the domain and avoid complications in 
the definition of the offshore boundary condition.

2.1 Governing Equations

The  MSE  are  given,  for  instance,  in 
Dingemans (1997).
Let the velocity potential be:

( , ) Re[ ( ) ]i tx t x e ωψΨ = (2)
where ω is the angular frequency of the wave, x 
is  a  2D  vector  holding  the  horizontal  spatial 
cohordinates. The dependent variable to solve for 
is the complex potential, ψ . 
For  purely  harmonic  waves,  the  following 
equation should hold in the whole domain:

( ) 2
g g+cc k cc Sψ ψ∇ ⋅ ∇ = (3)

where c and cg are the phase and group celerities, 
S is  a  source  term presented in Subsection 2.3 
and the modulus of  k is given by the dispersion 
relationship.

2 =  tanh( )kg khω (4)

The  dispersion  relationship  should  be 
evaluated  by expanding the hyperbolic  term as 
shown in Goda (2000).  
Once  the  depth  (variable  with  x  and  y)  and 
Omega  (wave  frequency)  are  defined,  the 
following domain expression must be defined in 
order to find kh (the product of wavenumber and 
depth):
equ.expr = {'Kh2sw',
'depth*Omega^2/9.806',
'P','0.00011*Kh2sw^9+0.00039*Kh2s
w^8+0.00171*Kh2sw^7+0.00654*Kh2sw
^6+0.02174*Kh2sw^5+0.0632*Kh2sw^4
+0.16084*Kh2sw^3+0.3555*Kh2sw^2+0
.66667*Kh2sw+1',...
'kh','sqrt(Kh2sw^2+Kh2sw/P)'}

Iterative methods, even if virtually correct at 
any  desired  precision,  are  discontinuous,  and 
henceforth  less  suited  to  a  numerical 
minimisation procedure.
Equation  3  remains  formally  unchanged  when 
the  dependent  variable  is  the  surface  elevation 
rather than the potential.
The velocity complex potential can be seen as:

( )( ) ( ) i xx A x e χψ = (5)
where  A(x)  is  the  amplitude  and  χ=kx is  the 
phase, both real.
Oddly  enough,  inserting  Eq.  (5)  into  (3)  we 
obtain the following eikonal equation:

( ) 2 2
g( , )k o cc Aχ∇ = + (6)

which  means  that  the  gradient  of  the  phase 
function  k is not  exactly the wavenumber given 
by the dispersion relationship and inserted in Eq. 
3, but other negligible terms appear.  Such small 
terms  may  have  some  effect  only  in  case  of 
strong  convergence  or  divergence  of  the  wave 
rays,  and we shall  not  deal  with them. On the 
contrary, we will derive the wavenumber vector 
(sometimes called the  effective  wavenumber) as 
the gradient of the phase function.

2.2 Boundary conditions

A  single  general  boundary  condition  is 
considered, relative to partial reflection, which is 
function of a real valued reflection coefficient R.
Extreme  cases  can  then  be  derived  of  total 
reflection,  R=1, and total absorption (i.e. waves 
propagating out of the domain), R=0.
The boundary condition, assuming no phase shift 
between the incident and the reflected wave, is:

g g
1n= cos
1

Rcc icc k
n R

ψ β ψ∂ −Γ ⋅ =
∂ +

(7)



where  β is the angle between the normal to the 
wave crest and the normal to the boundary n.  It 
can be obtained following the iterative approach 
is  suggested  by  Beltrami  et  al.  (2001).   The 
iterative procedure is not fully implemented here. 

The  initial  guess  for  β assumed  in  the 
following is that the incident wave angle is equal 
to the nominal off-shore wave direction, with a 
lower limit (i.e. 10°).  

In order to apply a correction on β, the wave 
direction  must  be  evaluated.  Theoretically,  we 
could simply ask to Comsol Multiphysics to take 
the phase of the potential  (i.e. obtain  kx in the 
range 0-2π) and find its gradient.  But this does 
not work, since the phase is not a simple function 
of the dependent variable.
A  possible  approach  is  to  take  the  spatial 
derivative  "manually"  (i.e.  outside  the  Comsol 
standard  routines)  by  means  of  the 
postinterp() command. 
A  simpler  solution  comes  from  the  following 
trick:

χχψ ii AeiAe k+∇=∇

k Ai
A

ψ
ψ

 ∇ ∇⇒ = − 
 

(8)

Here  k is only function of spatial derivatives of 
ϕ  and of its module. The wave directions, i.e. 
the components of k, is shown in Figure 1, which 
is a benchmark case presented by Bellotti et al. 
(2003), a circular island on a paraboloidal shoal. 
Cosβ is merely the normalised product of  k and 
the normal to the boundary. 

Figure 1. Waves propagating toward a sloping island. 
Cfr, Bellotti et al. (2003), fig. 6.

In Comsol Multiphysics, we shall have to set 
a few subdomain expressions. We first define  χ 
as the phase of the dependent variable, and this is 
conveniently obtained by the following function:

χ=unwrap(atan2(ψ, iψ)) (9)
We should first ask to Comsol the gradient of χ 
and verify that we get a blank field rather than 
the  correct  answer  (χ is  seen  to  vary  with 
regularity in space).  We then obtain k={k1,k2} as 
the gradient of χ by means of identity Eq. 8.  For 
this  purpose,  we  shall  write  the  following  2 
subdomain expressions:

k1=i (|ψ|x/|ψ|-ψx/ψ) (10)
k2=i (|ψ|y/|ψ|-ψy/ψ) (11)

where  the  subscript  x and  y stand  for  partial 
derivative of x or y. 

The iterative procedure is more conveniently 
implemented by a script file.

2. Internal generation of waves

Bellotti et al. (2003) suggest a way to define the 
incident waves as if they were generated by an 
internal wavemaker.  

It  is  otherwise  difficult  to  define  the 
incoming  waves  conditions.  They  would  enter 
into the domain from an open boundary,  where 
the exact potential is not known. Both reflected 
and  scattered  waves  coexist  with the  incoming 
ones,  but  waves  propagating  back  towards  the 
open boundary are in fact not known, depending 
on the solution of the problem itself.  

In order to generate waves from the interior 
of the domain, they derived a source term which 
is only active on a generation line and that inputs 
waves in both direction. 

In  order to switch on the term only on this 
line, a delta Dirac function δ(x) is used:

2 ( )gS gc a xδ= (12)
where a is the amplitude of the generated wave.

This  can  be  easily  achieved  in  Comsol  by 
considering  S=0 in  the  domain eq.  (3)  and  by 
adding a material line inside the domain, close to 
the  off-shore  boundary,  where  the  internal 
boundary  condition  should  not  only  insure 
continuity,

n Γ1= n Γ2 (13)
but add a weak term equal to:

2 i cg Ai test(ψ) (14)
where Ai is the amplitude of the incoming wave, 
with frequency  ω.  This term will be computed 
as is added to the (left side of the) domain Eq. 3, 
but only on the line. 



3 Model validation

The  first  validation  must  address  the  simple 
diffraction case, for regular waves. 

Johnson  (1952)  developed  diffraction 
coefficient  diagrams  for  several  regular  wave 
cases,  following  an  analytical  approach.   They 
can  be  found  in  the  Shore  Protection  Manual 
(1984)  and  some  of  them  also  appear  in  the 
Coastal Engineering Manual (2002). 

One example of such diagrams is shown in 
Fig. 2.  It gives the diffraction of regular waves 
traveling with 15° obliquity toward a breakwater 
and passing through a gap of width equal to one 
wavelength.

This  case  has  been  modeled  assuming  all 
absorbing  boundaries  and  results  are  given  in 
Figure 3.  

Figure 2.  Diffraction coefficient for a wave incident 
with  15°  obliquity  on  a  breakwater  and  passing 
through a gap as wide as the wavelength.

Figure 3. Simulated diffraction coefficient for the case 
in Fig. 2.

Contour  lines  are  rather  irregular  since  no 
smoothing  was  performed.  The  mesh,  rather 
coarse,  could  not  be  refined  due  to  severe 
limitations  of  the  hardware.   Nevertheless  the 
quantitative agreement is already rather good and 
the convergence lines are easily identifiable.

One  other  model  validations  concerns  the 
wave  amplitude  at  the  end  of  a  long  and 
reflective channel. Fig. 4 shows the comparison 
between the analytical solution proposed by Mei 
(1982) and the model outcomes, showing a very 
good agreement.  

Details of the channel geometry are given in 
the  paper  by Bellotti  et  al.  (2003).   The  same 
case  is  indeed  used  as  benchmark  in  fig.  9  of 
their paper.
Resonance occurs when the channel length is 1/4 
of the wavelength.

Figure 4. Wave amplification after propagation within 
a reflecting channel long L.  

4. Example application

Casal Borsetti marina (Ravenna, Italy) frequently 
experiences  high  waves  at  the  access  channel. 
As a mere exercise, students of the 2008 course 
of  Harbour  Construction  at  University  of 
Bologna,  Faculty of Engineering,  held by Prof. 
A.  Lamberti,  were  asked  to  design  some  pier 
extension  to  allow a  smoother  entrance  to  the 
marina.

Table 1. Incident wave climate (off-shore)



Figure 5.  Access  channel  to  Casal  Borsetti  Marina. 
The harbour extension in given with a gray line.

Figure  6.  Example  of  wave  propagation  (surface 
elevation  in  colour  scale).  The  generation  line  is 
visible on the right, almost perpendicular to the access 
channel.

Table 2. Wave height at the port entrance channel, for 
each condition shown in Table 1

The design is given in Figure 5 in gray color, 
superimposed to an aerial  picture.   The bottom 
topography  was  obtained  as  interpolation  of  a 
table with depths.  

The  wave  conditions  are  given  in  Table  1. 
For  each  wave  direction  and  wave  period,  a 
simulation adopting this model was run in order 
to  see  the  internal  wave  agitation.   The 
generation  line  was  rotated  in  order  to  be 
perpendicular to the wave direction.  An example 
of output is given in Fig. 6.

For each wave condition, the highest wave in 
front of the straight channel is selected.  Table 2 

shows when the channel can be navigated (white 
cells).  Most  of  the  times  with  high  waves, 
breakers impede navigation anyway (blue cells). 
For the class with waves from bora 30°, height 
1.5 m, navigation is possible and yet the waves 
slightly exceed the target value so that access to 
the port is not guaranteed. As a fact, most of the 
marina in that area are open toward south.

5. Conclusions

The  proposed  model,  validated  against  several 
benchmarks  and  applied  to  a  realistic  yet 
fictitious case, is seen to be suited for the study 
of  the  harbour  response  to  external  waves 
likewise other specific dedicated software.
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