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Abstract

This presentation shows a level set-based topology optimization method for the structural design
of negative permeability dielectric metamaterials incorporating the level set boundary expression
based on the concept of the phase field method, and its optimization algorithm implemented by
COMSOL Multiphysics. Furthermore, several design examples are provided to confirm the usefulness
of the proposed structural optimization method.
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1 Introduction

Electromagnetic metamaterials are artificial materials that exhibit extraordinary electromagnetic prop-
erties that are not available in nature. The characteristic property of electromagnetic metamaterials is
a negative refractive index, that is, negative permittivity and permeability, which were first predicted
by Veselago [1] in 1964. After Pendry et al. [2][3] and Smith et al. [4] showed some specific structures
to realize these properties, considerable research was carried out to investigate the unusual properties
of such materials and develop certain applications, such as cloaking devices [5], waveguides [6], leaky
wave antennas [7], energy harvesting devices [8] and the like. Recently, new types of metamaterials that
make use of the magnetic and electric resonance phenomena of dielectric materials have been proposed
[9]-[15]. These dielectric metamaterials are expected to improve the manufacturability and to provide the
possibility of achieving isotropic metamaterials under no metallic loss.

Metamaterials are usually composed of periodic arrays of unit cells which are adequately small com-
pared to the desired wavelength. Electromagnetic metamaterial behaves as a material with negative
properties, whereas the individual material do not. The effective property of metamaterials is obtained
using a method such as the ones that compute the effective properties by averaging electric and magnetic
fields in the unit cell [16], and by extracting of effective properties from S-parameters [17]-[20]. The basis
of metamaterial unit cells can be designed using such effective property methods.

Several metamaterial designs have been proposed that achieve desirable performance at certain fre-
quencies [21]. However, the design of unit cell significantly affects the metamaterials, so it is usually
difficult or time-consuming to design an appropriate unit cell by trial and error methods. One systematic
approach for the metamaterial design is to apply topology optimization method. Diaz and Sigmund [22]
proposed a topology optimization method for the design of negative permeability metamaterials where
several designs for metallic structures attached to dielectric plates that achieved negative permeability
were provided. Sigmund [23] proposed a topology optimization method for dielectric metamaterials where
the effective permeability were minimized at a specific frequency.

Since the performance of metamaterials is very sensitive to the presence of grayscale areas in the
optimal configurations, an optimization method that provides configurations with clear boundaries is
desirable. Recently, level set-based topology optimization methods have been proposed that fundamen-
tally overcome the grayscale problem. In level set-based method, the structural boundaries are implicitly
represented by iso-surface of the level set function, so clear optimized configurations can be obtained.
Yamada et al. [24] proposed a level set-based topology optimization method incorporating the level set
boundary expression based on the concept of the phase field method.

In this paper, we extended the above-mentioned level-set based topology optimization methods to the
structural design of negative permeability dielectric metamaterials. The rest of this paper is as follows.
Section 2 describes the level set-based topology optimization method, the formulation of the optimization
problem for both two- and three-dimensional cases. Section 3 describes the numerical implementation
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Figure 1: Fixed design domain D and level set function ϕ

which uses the Adjoint Variable Method (AVM) to obtain the sensitivity analysis. COMSOL multiphysics
is used to solve the equillibrium and adjoint equation. Several design examples are provided for both
two- and three-dimensional cases to confirm the validity of the presented method.

2 Formulations

2.1 Level set-based topology optimization method

Here, we briefly explain a level set-based topology optimization method incorporating a fictitious interface
energy[24]. A topology optimization problem can be formulated using a fixed design domain D, which
consists of a solid domain Ω, structural boundaries ∂Ω and a void domain D\Ω. As shown in Fig.1, in
the level set method, the structural boundaries are implicitly represented using the iso-surface of the level
set function, as follows. 

1 ≥ ϕ(x) > 0 for ∀x ∈ Ω \ ∂Ω
ϕ(x) = 0 for ∀x ∈ ∂Ω

0 > ϕ(x) ≥ −1 for ∀x ∈ D \ Ω
(1)

where positive values of level set function represent the solid domain, negative values represent the
void domain, and zero represents the structural boundaries. Let F be a objective function and G be a
constraint functional, the optimization problem that minimizes objective functional is then formulated
as follows using the above defined level set function ϕ.

inf
χϕ

F (χϕ) =

∫
D

f1(x, χϕ)dΩ +

∫
Γ

f2(x, χϕ)dΓ (2)

subject to G(χϕ) =

∫
D

g(x, χϕ)χϕdΩ−Gmax ≤ 0 (3)

where f1 and f2 are density functions of the objective functional, g is density function of the constraint
functional, and Gmax is the upper limit of constraint functional. The characteristic function χϕ(ϕ) is
defined by following equation.

χϕ(ϕ) =

{
1 if ϕ ≥ 0

0 if ϕ < 0
(4)

The above optimization problem is ill-posed problem because it allows the level set function to be dis-
continuous at everywhere. In this method, Tikhonov regularization method is used to regularize the
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optimization problem. The above formulation is replaced with the following optimization problem:

inf
ϕ

FR(χϕ, ϕ) = F +R (5)

subject to G(χϕ) ≤ 0, (6)

where R =
∫
D

1

2
τ | ∇ϕ |2 dΩ, and τ is a regularization parameter that adjusts the degree of regulariza-

tion. Using Lagrange’s method of undetermined multipliers, this formulation is then replaced with an
optimization problem without constraints as follows.

inf
ϕ

F̄R(χϕ, ϕ) = F̄ +R, (7)

where F̄ = F + λG, F̄R is the Lagrangian and λ is the Lagrange multiplier.

2.2 Updating scheme for level set function

Based on the above formulation, the KKT conditions of this optimization problem are described as
follows: ⟨

dF̄R

dϕ
, ϕ̃

⟩
= 0, λG = 0, λ ≥ 0, G ≤ 0. (8)

where the notation
⟨

dF̄R

dϕ , ϕ̃
⟩

represents the Fréchet derivative of the regularized Lagrangian F̄R with

respect to ϕ.
Level set functions which satisfy the above KKT conditions are candidate solutions of the level set

function that represent optimized configurations. However, it is not easy to find such level set functions
directly. In this method, the optimization problem is replaced by a time evolution equation introducing
a fictitious time t. The level set function is now updated by solving this equation, and an optimized
configuration is obtained as follows. Here, we assume that the variation of the level set function is
proportional to the gradient of Lagrangian F̄R, as follows:

∂ϕ

∂t
= −K(ϕ)

δF̄R

δϕ
, (9)

where K > 0 is a coefficient of proportionality. Substituting Eq.(7) into Eq.(9) and setting an appropriate
boundary condition, we have the following reaction-diffusion equations.

∂ϕ

∂t
= −K(ϕ)

(δF̄
δϕ

− τ∇2ϕ
)

∂ϕ

∂n
= 0 on ∂D \ ∂DN

ϕ = 1 on ∂DN

(10)

2.3 Electromagnetic wave propagation problem

2.3.1 Two-dimensional problem

Here, we explain the two-dimensional design problem for dielectric metamaterials. Figure 2 shows the
design domain. Transverse magnetic (TM) waves propagate in x-y direction where the magnetic field
vector is polarized orthogonal to the wave direction. Incident waves enter the domain from the input
boundary Γ1 and output waves are observed at the output boundary Γ2. Under periodic conditions, the
upper and lower boundaries ΓPEC are set to Perfectly Electric Conductors (PEC). In the two-dimensional
case, the governing equation is given as the following equations. The relative permeability of both the
background material and the dielectric material is set to 1.

a(Hz, H̃z) = l(H̃z) for Hz ∈ U, H̃z ∈ U (11)
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Figure 2: (a) Periodic structure for three-dimensional problem; (b) design domain and boundary condi-
tions

where

a(Hz, H̃z) =

∫
D

∇H̃z ·
(
ϵ−1
r ∇Hz

)
dΩ− k20

∫
D

H̃zHzdΩ+ jk0

∫
Γ1+Γ2

H̃zHzdΓ (12)

l(H̃z) = 2jk0

∫
Γ1

Hi
zH̃zdΓ (13)

U = {H̃z ∈ H1(Ω)}. (14)

where ϵr is the relative permittivity, k0 = ω
√
ϵ0µ0 is the wave number in a vacuum and Hi is an incident

wave.

2.3.2 Three-dimensional problem

Here, we explain the three-dimensional electromagnetic wave propagation problem. Figure 3 shows the
design domain for the three-dimensional problem. Incident waves enter the domain from the input bound-
ary Γ1. Under periodic conditions, the upper and lower boundaries ΓPEC are set as Perfectly Electric
Conductors (PEC) and the front and rear boundaries ΓPMC are set as Perfectly Magnetic Conductors
(PMC). Here, the gorverming equation is given as the following equations. Again, the relative perme-
ability of both the background material and the dielectric material is again set to 1.

a(E, Ẽ) = l(Ẽ) for E ∈ U, Ẽ ∈ U, (15)

where

a(E, Ẽ) =

∫
D

(
∇× Ẽ

)
· (∇×E) dΩ− k20

∫
D

ϵrẼ ·EdΩ+ jk0

∫
Γ1+Γ2

Ẽ · [n× (E× n)] dΓ (16)

l(Ẽ) = 2jk0

∫
Γ1

Ẽ ·EidΓ (17)

U = {Ẽ ∈ H1(Ω)}. (18)

where Ei is the incident field and n is the normal vector.

2.4 Effective permeability

Here, we explain the method for obtaining an effective property. Several approaches were proposed to
compute these effective properties. These methods are typically categorized into two types. One approach
is to average the electric and magnetic fields in a unit cell [16], and the other is to compute the effective
properties based on the coefficient of the S-parameter, namely, the complex reflectivity and complex
permeability [17]-[20]. Considering the accuracy of the methods and the ease of implementions, we use
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Figure 3: (a) Periodic structure for three-dimensional problem; (b) design domain and boundary condi-
tions

the extended approach [20] of original S-parameter-based method [17], where the effective parameters are
computed based on S-parameters.The effective permeability µeff is then obtained by following equation.

µeff = Zn, (19)

where

Z =

√
(1 + S11)(1 + S22)− S2

21

(1− S11)(1− S22)− S2
21

, (20)

n = cos−1

(
β

2S21

)
λ

2πd
, (21)

and

β = 1 + S11S22 − S2
21. (22)

In above formulation, S22 is used in addition to S11 and S21, for inhomogeneous inclusions. We note that
symmetric optimized configurations can be obtained using this formulation because it is symmetric with
respect to S11 and S22.

2.5 Formulation of optmization problem

2.5.1 Effective permeability minimization problem

Here, we discuss the effective permeability minimization problem. One particularly interesting optimiza-
tion problem is to obtain metamaterial designs that exhibit extreme negative permeability values. The
optimization problem objective is here to find a dielectric material distribution within the fixed design
domain that minimizes the effective permeability. Figure 4(a) shows a typical effective permeability curve,
where µ′ and µ′′ show the real and imaginary part of the effective permeability. The real part of the effec-
tive permeability has positive peak and anti-resonance point. The effective permeability has a desirable
negative value at this anti-resonance point. The purpose of the optimization is to minimize the real part
of the effective permeability at a desired frequency. However, if the positive peak lies between the initial
anti-resonance point and the target frequency, namely, if the target frequency is in the hatched area for
the case shown in Fig.4(a), configurations that demonstrate negative real part of effective permeability is
impossible to obtain directly. Thus, a two-step optimization process is used as in reference [23], where,
taking advantage of the fact that the imaginary part does not have positive peak, the imaginary part µ′′

of permeability is minimized during the first step (Fig.4(b)). After that, the real part of the effective
permeability is minimized during the second step (Fig.4(c)), using the optimized configuration obtained
in the first step as the initial configuration.

The optimization problem for this first step is described as follows.

inf
ϕ

F = µ′′ (23)

subject to G ≤ 0 (24)
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Figure 4: (a) A typical effective permeability curve; (b) the imaginary part of effective permeabiliy is
minimized during the first step; (c) the real part of effective permeability is minimized during second step

The optimization problem for the second step is described as follows.

inf
ϕ

F = µ′ (25)

subject to G ≤ 0 (26)

2.5.2 Effective permeability design problem

Here, we discuss the effective permeability design problem. Obtaining the metamaterial design that
demonstrate a certain desirable value for the effective permeability is of great importance to some novel
devices. The optimization problem objective is to find a dielectric material distribution that demonstrate
the desired value of effective permeability. The purpose of the optimization here is to obtain a distribu-
tion of dielectric material which demonstrate the prescribed value of effective permeability at a desired
frequency. The optimization problem can be formulated to minimize the square of the difference between
the effective permeability and a prescribed value. Again, the two-step optimization process is used. The
imaginary part is minimized during the first step, and the square of the difference between the effective
permeability and a prescribed value is minimized during the second step. The optimization problem for
the second step can be formulated as follows.

inf
ϕ

F = (µ′ − µ′
tar)

2
(27)

subject to G ≤ 0 (28)

2.6 Sensitivity Analysis

2.6.1 Two-dimensional case

Now, we discuss the sensitivity analysis for a two-dimensional case. The sensitivities are obtained using
the Adjoint Variable Method (AVM). First, the Lagrangian of the optimization problem is formulated as
follows.

F̄ = F (ϕ)−
∑

ij=11,21,22

∂F

∂Sij

(
a(Hz, H̃z,ij)− L(H̃z,ij)

)
, (29)

where H̃z,ij denotes the adjoint variables with respect to Sij . The sensitivity of the Lagrangian is then
obtained using the AVM.⟨

dF̄

dϕ
, ϕ̃

⟩
=

∑
ij=11,21,22

∂F

∂Sij

⟨
∂Sij

∂E
, Ẽ

⟩⟨
∂E

∂Hz
, H̃z,ij

⟩
−

∑
ij=11,21,22

∂F

∂Sij

(⟨
∂a

∂Hz
, H̃z,ij

⟩
+

⟨
∂a

∂ϕ
, ϕ̃

⟩)

= −
∑

ij=11,21,22

∂F

∂Sij

⟨
∂a

∂ϕ
, ϕ̃

⟩
, (30)
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where the adjoint variable H̃z,ij is obtained by solving the adjoint equation described as follows.⟨
∂Sij

∂E
, Ẽ

⟩⟨
∂E

∂Hz
, H̃z,ij

⟩
−
⟨

∂a

∂Hz
, H̃z,ij

⟩
= 0. (31)

2.6.2 Three-dimensional case

Here, we discuss the sensitivity analysis for a three-dimension case. The Lagrangian of the optimization
problem is formulated as follows.

F̄ = F −
∑

ij=11,21,22

∂F

∂Sij

(
a(E, Ẽij)− L(Ẽij)

)
, (32)

where Ẽij denotes the adjoint variables with respect to Sij . The sensitivity of the Lagrangian is obtained,
again using the AVM.⟨

dF̄

dϕ
, ϕ̃

⟩
=

∑
ij=11,21,22

∂F

∂Sij

⟨
∂Sij

∂E
, Ẽij

⟩
−

∑
ij=11,21,22

∂F

∂Sij

(⟨
∂a

∂E
, Ẽij

⟩
+

⟨
∂a

∂ϕ
, ϕ̃

⟩)

= −
∑

ij=11,21,22

∂F

∂Sij

⟨
∂a

∂ϕ
, ϕ̃

⟩
, (33)

where the adjoint variable Ẽij is obtained by solving the adjoint equation described as follows.

Sij − a
(
E, Ẽij

)
= 0. (34)

3 Numerical implementations

3.1 design variable

3.1.1 Two-dimensional case

For two-duimensional case, the relative permittivity ϵr in the domain is defined using the reciprocal of
the relative permittivity of solid and void domain.

ϵ−1
r =

(
ϵ−1
1 − ϵ−1

0

)
H (ϕ) + ϵ−1

0 , (35)

where ϵ1 is the relative permittivity of the dielectric material, ϵ0 is the relative permittivity of the
background material, and H (ϕ) is the Heaviside function.

The purpose of the reciprocal formulation used in Eq.(35) is to stabilize the optimization calculations.
We note that the reciprocal formulation and the linear formulation respectively represent lower and
upper theoretical bounds of the effective properties of the composite materials investigated here [25], so
the reciprocal formulation is physically reasonable .

In optimization process, the following smoothed Heaviside function is used.

H (ϕ) =


0 (ϕ < −w)
1
2 + ϕ

w

(
15
16 − ϕ2

w2

(
5
8 − 3

16
ϕ2

w2

))
(−w ≤ ϕ < w)

1 (w ≤ ϕ) ,

(36)

where w is the transition width of the Heaviside function which is set to a sufficiently small value.

3.1.2 Three-dimensional case

For three-dimensional case, the relative permittivity ϵr is defined using the linear formulation.

ϵr = (ϵ1 − ϵ0)H(ϕ) + ϵ0. (37)
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Figure 5: (a) Flowchart of optimization algorithm; (b)flowchart for optimization algorithm steps

3.2 Optimization algorithm

Fig.5(a) shows the optimization flowchart. During the first step, the imaginary part of the effective
permeability is minimized. Then during the second step, the real part of the effective permeability is
minimized for the effective permeability minimization problem. The square of the difference between
the real part of the effective permeability and the target value of the effective permeability is minimized
in the effective permeability design problem. Fig.5(b) shows the optimization flowchart for each step.
First, the level set function is initialized, then the equilibrium equation is solved using the Finite Element
Method (FEM) and the objective and constraint functional are computed. If the objective functional has
converged, the optimization procedure terminates, and if not, the sensitivities of objective and constraint
functional are computed using the AVM. Then the level set function is updated by solving the reaction
diffusion equation and the process returns to the second step. COMSOL Multiphysics is used to solve
the equilibrium and adjoint equation, and compute the objective and constraint functional.

4 Numerical examples

Numerical examples for two- and three-dimensional negative permeability dielectric metamaterials design
problems are now presented to confirm the validity of the presented method.

4.1 Two-dimensional design problems

Here, we first discuss effective permeability minimization problems where the target frequencies are set
either higher or lower than that of the positive peak of the initial configuration, to examine whether the
optimization can successfully find optimized configurations independent of the location of the positive
peak of the initial configuration. Next, we discuss an effective permeability design problem to find an
optimized configuration that exhibits a prescribed value of the effective permeability. Figure 6 shows the
design domain and boundary conditions. The size of the analysis domain is set to 120µm × 120µm and
the size of the fixed design domain is set to 80µm × 80µm. The whole domain is discretized using 120
× 120 square elements. The relative permittivity ϵ1 of the dielectric material is set to 100 − 1i and the
relative permittivity ϵ0 of the background material is set to 1. The transition width w of the Heaviside
function is set to 0.001.

4.1.1 Effective permeability minimization problem 1

Here, the target frequency is set to 0.30THz to examine a case where the target frequency is lower than
where the anti-resonance point of the initial configuration occurs. The upper limit of the volume fraction
is set to 70%.
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Figure 7: Optimization results of the first step for two-dimensional effective permeability minimization
problem 1: (a) initial configuration; (b) optimized configuration; (c) Effective permeability curve

Figure 7 shows the initial and optimized distribution obtained in the first step, and the obtained
effective permeability curves of the initial and optimized distribution. The frequency at the anti-resonance
point of the imaginary part of the effective permeability gradually decreases during the optimization
procedure and finally reaches the prescribed frequency. The value of the imaginary part of the effective
permeability of the initial configuration and optimization configuration at 0.30THz is respectively, -0.01,
-13.19. The real part of the effective permeability is then minimized during the second step of the
optimization procedure. Figure 8 shows the initial and optimized configuration obtained in the second
step, and the effective permeability curve of the initial and optimized distribution. The values of the real
part of the effective permeability of the initial configuration of the first step and optimized configuration
obtained in the second step at 0.30THz are respectively 1.33 and -5.07. It shows that the optimization
successfully finds an optimized solution that has negative effective permeability.

Figure 9 shows the electric field of the initial configuration after the first step, and the optimized
configuration obtained after the second step. The red arrows in the figure indicate the electric field. It
shows that a circular electric field is generated in the optimized design, which induces a magnetic field
along the z-axis.
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Figure 8: Optimization results of the second step for two-dimensional effective permeability minimization
problem 1: (a) initial configuration; (b) optimized configuration; (c) Effective permeability curve
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Figure 9: Configurations and electric field distribution for two-dimensional effective permeability mini-
mization problem 1: (a) initial; (b) optimized
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Figure 10: Optimization results for two-dimensional effective permeability minimization problem 2: (a)
initial configuration; (b) optimized configuration; (c) Effective permeability curve
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Figure 11: Optimization results for two-dimensional effective permeability design problem: (a) initial
configuration; (b) optimized configuration; (c) Effective permeability curve

4.1.2 Effective permeability minimization problem 2

Here, the target frequency is set to 0.45THz to examine a case where the target frequency is higher than
that of the anti-resonance point of the initial configuration. A volume constraint is not applied here.

Figure 10 shows the initial and optimized configurations, and electric field distribution obtained in
the second step of the optimization procedure. Figure 10 shows the corresponding effective permeability
curves for the initial and optimized distribution. The real part of the effective permeability of the initial
and optimized configuration at 0.45THz is, respectively, 0.65 and -2.44, which shows that the optimization
successfully finds an optimized solution that exhibits negative effective permeability. The red arrows in
Fig.10 show the electric field, and we again see that a circular electric field is generated in the center of
the design domain of the optimized configuration.

4.1.3 Effective permeability design problem

Next, we shows an effective permeability design problem. Here, the target frequency is set to 0.30THz
and the target value for the effective permeability is set to -3.0. The upper limit of the volume fraction is
set to 70%. As described in previous chapter, the imaginary part of effective permeability is minimized
during the first step, then the square of the difference between the effective permeability and a prescribed
value is minimized during the second step of the optimization process.

Fig. 11 shows the initial and optimized configurations, and electric field distributions obtained in the
second step. Figure 11 shows the effective permeability curves of the initial and optimized distribution
obtained in the second step. The real part of the effective permeability of the optimized configuration
at 0.30THz is -3.00, which indicates that the optimization successfully finds an optimized configuration
that has a desirable value for the effective permeability at the target frequency.

4.2 Three-dimensional problems

Here, we discuss a three-dimensional design problem. Figure 12 shows the design domain and boundary
conditions. The size of the analysis domain is set to 120µm × 120µm × 150µm and the size of the fixed
design domain is set to 80µm × 80µm × 110µm. The analysis domain is discretized using 48 × 48 × 60
square elements. The relative permittivity ϵ1 of the dielectric material is set to 100− 1i and the relative
permittivity ϵ0 of the background material is set to 1. The transition width w of the Heaviside function
is set to 0.001.

4.2.1 Effective permeability minimization problem

The effective permeability minimization problem where the target frequency is set to 0.30THz examines a
case where the target frequency is lower than that of the anti-resonance point of the initial configuration.
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Figure 13: Optimization results for three-dimensional effective permeability minimization problem: (a)
initial configuration; (b) optimized configuration; (c) Effective permeability curve

A spherical shape with a volume fraction of 25% is used as the initial configuration. The upper limit of
the volume fraction is set to 90%.

The initial and optimized distribution obtained in the second step of the optimization process are
shown in Fig. 13 and the corresponding effective permeability curves are shown in Fig. 13. The anti-
resonance point of the real part of the effective permeability gradually decreases during the optimization
procedure and finally reaches the prescribed frequency at the end of the optimization procedure. The
real part of the effective permeability of the initial and optimized configuration at 0.30THz are respec-
tively 1.06 and -3.49, which shows that the optimization can successfully find an optimized solution that
demonstrates negative effective permeability.

5 Conclusions

This paper discussed a topology optimization method of dielectric metamaterials based on the level set
method using COMSOL multiphysics. The optimization problems were formulated for both two- and
three-dimensional problem to minimize the effective permeability, and to obtain a prescribed effective
permeability at a target frequency. A level set-based boundary expression was applied to obtain clear
boundaries, and an S-parameter-based approach was applied to compute the effective permeability of the
metamaterials. Based on the formulation of the optimization problem, an optimization algorithm was
constructed. COMSOL multiphysics was used to solve the electromagnetic wave problems and adjoint
equation to obtain the sensitivity analysis. Several design examples were provided to examine the validity
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of presented method. We also confirm that the presented method obtains smooth and clear optimized
configurations for all the presented cases.
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