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Abstract: The optimal design of the grating 

coupler for surface plasmon generation is 

revisited for its interdisciplinary importance in 

the efficient use of energy, and the strong 

dependence of the efficiency of the system on 

the design. This work contributes a 

comprehensive gradient based numerical 

optimization technique and tools to optimize 

both geometry of the grating and parameters of 

the Gaussian beam simultaneously. We conduct 

gradient based optimization in COMSOL- 

Multiphysics/MATLAB® to obtain a numerical 

gradient and update the design. The method 

modifies all geometrical boundaries of each 

groove independently. The gradient of the 

objective function is calculated from post 

processing sensitivity analysis data, and used to 

update the geometry of each groove in a fixed 

mesh. Gaussian beam parameters are also 

optimized simultaneously in the final design. An 

optimal design shows different groove width, 

depth, and distance between adjacent grooves. 

Results obtained show the practical value of 

these tools to design an efficient n-grooves 

grating.  
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1. Introduction 
In quest for the design and development of 

smaller and more powerful devices, the ability to 

efficiently use energy is of central importance. 

Therefore the optimal design of the Plasmon 

Coupler is of great interdisciplinary interest for 

its value in enhancing/scattering electromagnetic 

energy. An efficient plasmon generator is thus an 

important contribution for practitioners to be 

able to build better and useful devices. 

Excitation of surface plasmons via photons 

of a light beam directed to a grating-like 

interface between  metal and dielectic produces 

an enhanced electromagnetic field in a vicinity of 

this interface. Efficient resonance coupling 

drives the collective oscillation of the beam of 

light and charge density on the grating surface of 

the metal from an input wave to a plasmonic 

mode with less energy loss. The plasmonic mode 

excited in this way or SPP has shown great 

sensitivity to changes in geometry, and 

characteristics of the incident wave.  

Gradient based optimization applied to the 

optimal design of the grating coupler has 

produced significant improvement in energy 

conversion [1][2].  We present a computational 

tool developed using COMSOL-Multiphysics/ 

MATLAB® that modifies simultaneously all 

boundaries of each groove in a silver grating and 

the design parameters of the input Gaussian 

Beam in a fixed mesh.   

A simple grating coupler for the generation 

of SPP’s is illustrated in Figure (1), with input 

Gaussian beam.  

 

 
Figure 1:  Surface plasmon grating coupler 

 

The grating consists of n-grooves on a silver 

slab.  The size of these grooves {d,w}, 

separating distance {a} and the parameters of the 

Gaussian beam such as {θ} are modified during 

optimization to produce a design that improves 

the energy conversion.  

 

1.1 Governing Equations 

Maxwell Equations govern electromagnetic 

phenomena.  Under simplifying assumptions and 

the constitutive equations for linear, isotropic, 

homogeneous media, we obtain Maxwell 

equations in the frequency domain.  This renders  

a Helmholtz Equation (PDE) in the transverse 

magnetic Hz  for the (x,y) plane: 

    

 
  



 

An output coupler design excites a plasmonic 

mode in the leftmost boundary according to the 

following equation obtained from [3].  

               

 
where β is the propagation constant, and  

permittivity of silver at fixed wavelength  

800 nm. 
 

2. Mathematical Formulation and 

Model 
The optimal design problem after 

discretization of the PDE by the Finite Element 

Method (FEM) is:           
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   is the objective 

function, u  the magnetic field or phasor, v the 

design parameters, and Ku = b the FEM linear 

system.  J is the complex valued wave coupler 

functional defined by  

 

 
 

where, {EG,HG} are the electric and magnetic 

field of the Gaussian beam, and {E,H} the 

corresponding FEM approximations in the ouput 

coupler induced by the plasmonic mode.  

The Gaussian beam formula is given by 

 

where  

 
  u = (x – x0)cos(θ)+(y – y0)sin(θ), 

  v = – (x – x0)sin(θ)+(y – y0)cos(θ), 

  x0 =   (x + s) + dist * cos(θ), 

  y0 = dist * sin(θ). 

 

in axis of propagation u, radial distance v and the 

typical Gaussian beam parameters. 

The Gaussian beam design parameters are 

the distances {s, dist} and the angle of 

propagation {θ}. The values for {s, dist} 

correspond to the distance from the first groove 

of the grating { }, and the distance from the 

silver slab to the center of the Gaussian beam 

respectively. In order to satisfy the size 

constraint of typical optical fiber the constraint is 

introduced  dist ≥ (62.5 e-6m) cot(θ).  This is 

illustrated in Figure 2. 

 

 
Figure 2:  Gaussian beam parameters 

 

The geometric parameters are given for a 

discrete step at each boundary of a groove 

denoted as displacement of right (dxR), left 

(dxL) and bottom (dyB) boundaries.  This is 

illustrated in Figure 3. 

 
Figure 3: Geometric design parameters 

  

The standard mathematical treatment of 

separating imaginary and real components is 

used in this work. The derivative of P(J) is 

obtained for geometric and Gaussian beam 

parameters with general form of the derivative of 

the objective function is: 

 

 ,            (6)  

 

In (4) note that the Gaussian beam parameters 

only modify {EG,HG}, and the geometric 

parameters affect {E,H} exclusively.  This 

separates the formulation of the gradient into two 

independent parameter sets: analytical Gaussian 



 

beam parameters, and numerical geometric 

parameters.  Gradients are then computed using 

direct differentiation for the geometric 

parameters in the FEM linear system, and  

analytical derivatives obtained for the Gaussian 

beam parameters.  Thus the data used to solve 

the linear system Ku=b is used efficiently to 

obtain the sensitivity of u to all geometric 

parameters.   The derivatives of P with respect to 

a geometric parameter  v are given by: 

 

 
 

3. Numerical Optimization Methods 
An optimal design is obtained using a 

numerical gradient by the efficient use of the 

available solution data from COMSOL-

Multiphysics and derived formulas programmed 

in MATLAB.  A gradient of P(J) for geometric 

parameters is obtained numerically using 

COMSOL’s TM-mode from RF module, the 

Parameterized Geometry from the Moving Mesh 

mode (ALE) and the Forward Sensitivity from 

the Optimization and Sensitivity Analysis 

module. The analytically obtained formulas for 

the Gaussian beam parameters of the gradient  

are coded and the corresponding domains and 

boundaries updated using MATLAB and applied 

to the design of the grating coupler. 

In the TM-mode the PDE in equation (1) 

with absorbing boundary conditions (ABC) and 

perfectly matched layer domains (PML) 

complete the boundary value problem.  Figure 4 

illustrates the computational domain and 

boundary conditions. A 4-grooves grating is 

chosen to modify the geometry by displacement 

of all boundaries of each groove as seen in 

Figure 3.  The numerical gradient of P(J) with 

respect to the geometric parameters is obtained 

from direct differentiation of the FEM linear 

system Ku=b.  The forward sensitivity mode 

uses the solver data for K efficiently. The 

sensitivity of the state variables u to 11 

displacement parameters is obtained in this 

manner (3 per groove minus a fixed dxL for the 

first groove).    

 

 
Figure 4:  Computational Domain 

 

To compute the sensitivity to the geometric 

parameters a Parameterized Geometry of the 

ALE moving mesh mode is defined.  The width 

of a groove can be modified according to the 

gradient by moving the dxR and dxL boundaries 

to the left, right or no displacement. Similarly the 

dyB changes the depth of the groove by 

displacement upward, downward or no change.  

The forward sensitivity in the Optimization and 

Sensitivity Analysis module then computes 

efficiently the sensitivity of the magnetic field u 

to changes in the geometry of the grating defined 

in this way. 

The sensitivity of P(J) to the geometric 

parameters is computed by post processing the 

forward sensitivity data at the boundary 8e-6 m 

from the interface according to the obtained 

formulas.  The three Gaussian beam parameters 

s, dist and θ only require an update of the 

constants, and therefore can be efficiently 

obtained from the current solution. This 

fortunately does not require another solver 

iteration.   In total a 14 dimensional gradient is 

computed per each solver step.     

A fixed mesh is used by defining domains as 

silver/air according to the permittivity data at 

λ=800nm.  This is accomplished using discrete 

step updates to increase or decrease the size of 

each individual groove of the grating.   

The algorithm modifies the Gaussian beam 

parameter as the geometry of the grating 

changes.  When the geometry parameter cannot 

improve the objective function, the Gaussian 

beam optimization continues to find the optimal 



 

distances {s, dist} and angle for the best obtained 

geometry.   

 

4. Results 

The Gaussian beam parameter optimization 

of P(J) is conducted on a fixed geometry to 

obtain the graph in Figure 5. 

 

 
Figure 5: Gaussian beam parameter optimization 

 

A geometric parameter optimization step 

shows a directional augmentation of the real 

magnetic field illustrated in Figure 6. 

 

 

 
Figure 6: Geometric parameters optimization  

 

The optimal design for the 4-groove grating 

is illustrated in Figure 7. It confirms that the size 

of the grooves in the grating is non-uniform.   

Figure 8 shows the visualization of the real 

magnetic field of the optimal design.  

 

 
Figure 7:  Optimal 4-grooves grating 

 

 
Figure 8:  Optimal design Real(Hz) 

 

The conversion rate of the grating improves 

more than 4 fold as optimal designs are 

generated.  Table 1 summarizes the best designs.   

 

Table 1: Geometry and Gaussian beam 4-

groove designs 

 

Design   

(width X depth) 

nm 

Gaussian 

Beam 

Parameters 

   P e-10 

(100 X 50,  

100 X 50,  

100 X 50,  

100 X 50) 

s=5.4e-7m,  

  
dist=1.58e-5m 

1.7 

(6.3%) 

(130 X 80,  

120 X 80,  

100 X 80,  

100 X 80) 

s=3.3e-7nm,  

  
dist=1.556e-5m 

6.76 

(25%) 

(160 X 70,  

150 X 80,  

160 X 80,  

120 X 90) 

s=3.4e-7m,  

  
dist=1.52e-5m 

7.3 

(27%) 

 

5. Conclusion 
The results show that a non-uniform grating 

allows significant improvement of the efficiency 

of surface plasmon generation. The developed 

tools are suited to modify  the geometry of  each 

groove independently and find the optimal 

Gaussian beam parameters for the modified 

geometry of the grating that optimizes energy 

conversion.    

The efficient use of solution data obtained 

from one solver iteration is a strong benefit of 

this technique. The optimal design tool obtains a 

14-dimensional numerical gradient from one 

FEM solver iteration.  This is a promising 



 

alternative to a 14 parameter sweep that requires 

multiple solver calls for each parameter.    

The developed tools are of considerable 

practical value. The optimal design tools can 

improve a near optimal initial design and provide 

valuable insight to practitioners on the best 

design of this nanoplasmonic system.  
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