COMSOL CONFERENCE EUROPE 2012

October 10 - 12, 2012 Milan, Italy

Raffaele Capuano Ph.D. Candidate Delft University of Technology Process & Energy Laboratory Delft The Netherlands R.capuano@tudelft.nl

COMSO

Numerical Analysis of Conjugate Heat Transfer in Foams

Authors:

N. Bianco¹, R. Capuano², W. K. S. Chiu³, S. Cunsolo¹, V. Naso¹ and M. Oliviero¹. ¹ DETEC, Università degli studi Federico II, Napoli, Italy ² Delft University of Technology, Process & Energy Laboratory, Delft, The Netherlands ³ Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA

Framework agreement Università di Napoli Federico II University of Connecticut December 2010

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

SOME APPLICATIONS OF OPEN CELL METALLIC FOAMS

MECHANISMS OF HEAT TRANSFER IN FOAMS

Coupled heat transfer:

- convection: in pores (fluid phase)
- **conduction:** in the fluid and in the solid phases
- radiation: accurate calculations required in many high temperature applications

CONJUGATE HEAT TRANSFER SIMULATION IN A FOAM USING THE BUILT-IN COMSOL[®] MULTIPHYSICS

 Distribution of the cell surface temperature, velocity and pressure.

Temperature, pressure and velocity fields in
the mid-sections of the cell.
COMSOL
CONFERENCE

COMSOL Conference Europe 2012

PROCEDURE LINEUP

3D STRUCTURE REPRESENTATION SURFACE EVOLVER

MESHING AND CFD ANALYSIS COMSOL MULTIPHYSICS®

SETUP

- Weaire-Phelan cell structure inscribed in 2 mm·2·mm·2 mm cubic volume
- Fictitious inlet section
- SiC (silicon carbide ceramic foam)
- 92.5% cell porosity
- Steady-state
- Incompressible flow
- Homogeneous and constant properties of gaseous and solid phases
- Grey body solid surfaces

CONJUGATE HEAT TRANSFER

CONVECTION

Flow modulus within the structure

Laminar flow: COMSOL[®] Inlet and Outlet built-in conditions

Inlet velocity: 1.0 ^m/_s Outlet pressure: 0 Pa

Heat transfer: COMSOL[®] built-in Outflow condition

CONJUGATE HEAT TRANSFER

RADIATION AND CONDUCTION

COMSOL[®] built-in Surface-tosurface radiation model

Prescribed radiosity

Incident radiation = $7.5 \cdot 10^5 \text{ W}/\text{m}^2$

Reradiating surfaces

Incident radiation = Hemispherical emissive Power

RESULTS

TEMPERATURE (K) FIELDS: a) Y = 1 mm b) Z = 1 mm

RESULTS

PRESSURE (Pa) FIELDS: a) Y = 1 mm b) Z = 1 mm

RESULTS

VELOCITY (m/s) FIELDS: a) Y = 1 mm b) Z = 1 mm

- A 3D reconstruction based on W&P model has been imported into COMSOL[®] Multiphysics
- Conjugate conductive convective radiative heat transfer in air saturated SiC ceramic foams has been evaluated
- Results obtained by these simulations are useful to evaluate coefficients and parameters to be used in continuous models of the foam.

FURTHER DEVELOPMENTS

The continuous approach could be applied to the study of different applications where a discrete representation of the foam required unsustainable computational costs.

high-temperature solar power plants
electric or thermal insulation

