

Electro Thermal Performance Prediction of Radio Frequency Ablation System for Efficient Cancer Treatment Plan

Gnanasekar V¹ and Raj C Thiagarajan²

¹ Perfint Healthcare Pvt. Ltd

²ATOA Scientific Technologies Private Limited

Introduction

- Cancer causes significant human deaths and is increasing due to increase in life expectancy and lifestyle.
- Radiofrequency ablation (RFA) is an encouraging procedure for cancer treatment.
- The objective of this paper is to demonstrate the multiphysics simulation methodology and COMSOL capability for the radio frequency ablation procedure planning and simulation

Picture from http://rewindingtothepast.blogspot.in/2009/06/growthrate-of-cancer-how-long-has-it.html

Picture from http://nursingcrib.com/nursing-notes-reviewer/medicalsurgical-nursing/pathophysiology-of-cancer/

RF Ablation

- Radio frequency ablation
 utilizes ac current and induces
 heat into the tissue by
 conversion of electrical energy
 into thermal energy.
- Temperature control of the tissue is critical for safe and efficient treatment.
- Simulations to plan a safe procedure.

Picture from: http://www.surgery.usc.edu/divisions/hep/radiofrequencyablation.html

Governing Equation

- The RF electrical conduction of the tissue is governed by the Laplace's equation
- The heat transfer in the tissue is governed by the Bio heat equation
- The source term in the bio heat equation is related to the electrical potential for Electro thermal coupling.

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

$$\nabla \cdot k \nabla T + \dot{q} + Q_m - Q_p = \rho_t c^{-1}$$

$$q = \mathbf{j} \cdot \mathbf{E} = \frac{1}{\sigma} \left[\left(\frac{\partial V}{\partial x} \right)^2 + \left(\frac{\partial V}{\partial y} \right)^2 + \left(\frac{\partial V}{\partial z} \right)^2 \right]$$

which V is electrical potential. Q_m and Q_p represent the metabolic heat generation and the heat loss due to blood perfusion. T, is the temperature, k is, the thermal conductivity.

Design and Simulation

- Cool-tip™ RF Electrode Kits, Single model ACT1530 with length of 150mm and an exposure of 30 mm is modeled.
- Liver tissue 3D volume of around 120 mm deep axisymmetric segment was modeled with appropriate boundary conditions.
- The electrode center of the exposure is positioned at the center of the Liver tissue Volume.
- A frequency of 480 kHz at 100 Watts energy output of the electrode is considered.

Picture from http://www.cool-tiprf.com/electrodes.html

DoE Design and Simulation

- A frequency dependent electrical and Transient thermal simulation was performed.
- The single and twin electrode configuration was used to evaluate the heating performance
- An equivalent electrical potential as prescribed by the manufacturers is applied to the probe
- DoE: Input energy, time duration,
 Angle, Distance between electrode,
 exposure length

Electro Thermal Properties of Liver

- RF ablation system operates at a frequency range of around 500 kHz.
- The Cool-tip™ RF Ablation Systems operating frequency is 480 kHz.
- The electrical properties of the tissue depend on the composition and structure and are dispersive.

Liver			
Property	Symbol	Unit	Value
Troperty	3,111,501	Onic	varac
Relative	εr		
permittivity	(500 kHz)	С	2770
	(33312)		_,,0
Dielectric	σ		
conductivity	(500 kHz)	S/m	0.36
Thermal			
conductivity	k	W/mK	0.512
Blood			
perfusion			
coefficient	ωb	1/s	0.017

Electro thermal properties of liver
Tissue at 500 kHz

Results and Discussion

- The coupled electro thermal performance results are reported
- Input energy, time duration, exposure length were investigated.
- The heating performance results of single probe
- The temperature distribution and electrical potential distribution are highlighted

Typical Temperature distribution for a frequency of 480 kHz at 100 W output.

Surface: Temperature (K)

Iso surface distribution for a temp of 333 oK at a frequency of 480 kHz and 100 W output.

Results and Discussion

- 3D Model: Twin electrode configuration
- Parameters: Input energy, time duration, Angle, Distance between electrode, exposure length
- Output: Temperature distribution

Typical electrical potential distribution contour plots

Typical temperature distribution contour plots Typical 50oC Temperature isosurfaces plots

Conclusion

- A brief about Radiofrequency ablation, an interventional technique for cancer treatment was given.
- Coupled electrothermal simulation methodology
- A typical single and twin electrode parallel configuration for cancer ablation was investigated.
- The simulation results showcased the modeling capability and advantages of coupled electrothermal simulation for planning optimal and safe RF ablation