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Abstract: It is demonstrated how the RF module 

can be used to approximately model thin 

conducting wires or cables and how they interact 

with a surrounding electromagnetic field. Despite 

being non-stringent the method can reasonably 

well predict currents induced by an applied 

electromagnetic field in wires, and networks of 

wires, as well as fields radiated from current-

carrying wires (antennas).  
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1. Introduction 
 

In Finite Difference Time Domain (FDTD) 

methods, where a regular structured mesh is used, 

it is in fact possible to include the effect of 

conducting wires having a radius much smaller 

than the mesh size into a global 3D model [1]. A 

Telegrapher's equation is employed to solve for 

the wire current, thus allowing for wave 

propagation and resonances. The trick is to take 

into account the electromagnetic energy very 

close to the wire surface by analytically including 

it into the expressions for the wire inductance and 

capacitance that appear in the Telegrapher´s 

equations. Also the parallel component of the 

global electric field is used to drive the wire 

current. Thanks to the regular FDTD mesh 

structure it is possible to describe the two-way 

interaction with the surrounding electromagnetic 

field in a fully self-consistent way. The FDTD 

scheme has therefore become very popular for 

modeling of all kinds of situations where thin 

wires or cables are involved, such as wire 

antennas and field coupling to and from cables 

and cable networks. Note that this method allows 

computation of both the field radiated from a 

current-carrying wire and the current induced in 

the cable due to an external time-varying 

electromagnetic field. 

Despite many attempts, see for example [2], 

no similar technique being of practical use has 

been presented for finite element methods (FEM). 

Basically, the reason is the unstructured mesh into 

which the wire is embedded and the mathematical 

formulation of FEM. The proposed methods have 

either required elements almost as small as the 

wire radius and/or resulted in very complex 

implementations. A consequence of this is that 

FEM based solvers are not being considered 

particularly efficient for solving problems related 

to ElectroMagnetic Compatibility (EMC) issues 

and wire antennas. EMC deals with problems 

occurring due to cross-talk and interference to or 

from conducting wires or cables; a typical 

situation is illustrated by Fig. 1. 

Here, we present an approximate method 

which is very easy to implement and that can be 

used to include wires having a radius smaller than 

the typical element size into a 3D model. The 

technique works for both low and high 

frequencies. In version 4.3 of COMSOL 

Multiphysics an implementation of the 

Telegrapher's equation is introduced in the RF 

module. Starting from this and adding the 

appropriate couplings to the external fields we can 

build up an approximately self-consistent model 

of the wire and its surrounding environment. The 

methodology is explained and illustrated with 

some examples. 

 

 
 

Figure 1. An example where electromagnetic 

interference (EMI) between cables is very difficult to 

model using conventional FEM techniques. 



 

2. The Telegrapher´s equations 
 

In the Transmission Line Equation physics 

node in COMSOL Multiphysics the frequency 

domain equation for the voltage V along a two-

wire transmission line is given by 
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Here, V(x) is the voltage between the two parallel 

wires and x is the distance along the line. R, L, G, 

and C are the resistance, inductance, conductance, 

and capacitance per unit length of the line. The 

line current I(x) is related to V(x) via 
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It is important to note here that for the 

transmission line it is assumed that the two wires 

are so close to each other that all of the 

corresponding electromagnetic energy is confined 

to the region between the wires and that no 

interaction takes place with the surroundings. 

 For the case of wires having radius a and axis 

separation distance d, the field problem can be 

solved analytically, resulting in the line 

inductance and capacitance given by 
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3. Subcell model for a single thin wire  
 

For a single wire far from other conductors it 

is not possible to define and calculate line 

parameters such as L and C describing all of the 

electromagnetic energy associated with the wire 

current and charge. It turns out, however, that one 

can still use the Telegrapher´s equation (1), but 

now with the line parameters describing only that 

part of the energy which is localized in the 

immediate vicinity of the wire surface, out to a 

distance of the order of the mesh element size Δ. 

In the FDTD formulation, with its regular 

elements, one can derive the following 

expressions for these parameters: 
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In order to include the driving force from 

external sources and current in distant parts of the 

wire, one adds the parallel component Ex of the 

global electric field to the local field xV  in 

(1): 
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The current is now given by 
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In the finite element method, where the elements 

are non-structured, it is not expected to have the 

same degree of accuracy as in FDTD but, as we 

will demonstrate, the agreement is acceptable for 

many purposes. If one has the same element size 

everywhere along the wire, this value is a good 

approximation of Δ. Moreover we use a suitable 

average value for the parallel electric field Ex. For 

instance it is possible to employ the diskavg or 

circavg operators. 

 Finally it should be noted that equation (7) 

retains the form of equation (1), implying that 

current conservation and continuity remain 

natural boundary conditions.  

  

4. Validation case I: A square-shaped loop 

in an oscillating applied magnetic field 
 

The first validation case consists of a planar 

square-shaped wire loop immersed in an external 

magnetic field. The method described above is 

implemented using the electromagnetic wave 

equation and transmission line physics nodes in 

the RF module. Figure 2 shows the magnetic field 

lines and the magnetic field amplitude in the plane  



 

 
 

Figure 2. A conducting loop placed in a vertical 

magnetic field. The amplitude of B is shown in the 

plane of the loop (logarithmic color scale). 

 

of the loop. It is clearly seen that the induced 

current in the loop reduces the field amplitude 

inside the loop, in accordance with Lenz´law. 

Figure 3 illustrates the variation of V (green 

curve), Eparallel (blue curve), and I (red curve) 

along the loop. As expected, the voltage, i.e. the 

wire charge density, varies but the current is 

approximately constant around the loop. 

However, the fluctuations in current indicate that 

the convergence is relatively poor due to the non-

structured mesh and the associated difficulty to 

define a proper Eparallel,  

 

 

 
 

Figure 3. Parallel electric field, wire voltage, and 

current along the closed loop. 

 

 
 

Figure 4. The induced loop current as function of 

frequency and for three different values of the wire 

radius a. Comparison between simulated and analytical 

results 

 

Since Lw and Cw depend on the wire radius a, 

a series of simulations were performed, where the 

loop current was calculated as function of 

frequency for three different values of a. These 

results were then compared to an analytical 

expression derived using an exact formula for the 

full loop inductance. As can be observed in Figure 

4, the agreement is good. For low frequencies the 

resistive part R of the loop impedance dominates, 

resulting in a linear relation between I and f. As 

the frequency increases the inductive part iωL 

becomes dominant and the current is saturated. 

Note that L consists of two parts: Lw and the part 

represented by the extra term Ex in (7). If the latter 

is omitted in (7), the current curves would still 

saturate but on a much higher level. We have thus 

shown that our model indeed gives a realistic 

description. 

 

5. Validation case II: A half wave dipole 

antenna 

 
In the former validation case we have 

demonstrated that our model is realistic for 

describing the induction of wire currents due to 

external fields. We now also want to verify that 

we can model the electromagnetic field radiated 

from a current-carrying wire. 

To do this we look at one of the simplest 

possible cases viz. a half wave dipole. This 

vertical antenna consists of two rods, each 1 meter 

long, connected via a short feed gap across which 

a voltage is applied. Two models are compared:  



 

      
Figure 5. The two antenna models. Cylinder model 

(left) and wire model (right). 

 

one where the rods are resolved and modeled as 

two perfectly conducting cylinders and one where 

the antenna is modeled using two thin wires. The 

two geometries are seen in Figure 5. 

The current distribution in the wire model is 

shown in Figure 6. Despite some fluctuations due 

to convergence problems, the average current 

profile is as expected and the radiation pattern is 

almost identical to that of the resolved cylinder 

model. This is confirmed in Figures 7 and 8. Also 

the input impedance was calculated. It was found 

to be 106 + 43i Ω for the cylinder model and 101-

4i Ω for the wire model.  
 

 
Figure 6. Current distribution along the wire 

dipole. 

 

 
 

Figure 7. 3D radiation pattern from the wire 

dipole. 

 

The real parts, describing the radiated power, 

obviously agree quite well. That the imaginary 

parts, describing the inductive near-field energy, 

differ significantly but this is not surprising since 

the feed region is modeled very differently in the 

two models. 
 

 
 

Figure 8. Radiation pattern in a vertical plane. 

Comparison between resolved cylinder and 

transmission line wire antenna models. 

 

6. Conclusions 

 

We have discussed and examined the 

possibility to employ a technique borrowed from 

the FDTD simulation method to model thin 

conducting wires and how the interact with the 

global electromagnetic field. Although the FEM 

method cannot exactly model such thin wires, the 



 

examples shown here demonstrate that our 

method can be useful, provided the required 

accuracy is not too high. In areas such as EMC, 

where interference levels are measured in dB:s, it 

may provide a means to calculate first estimates. 

 

7. References 
 

1. Taflove, A. and Hagness, S.C., Computational 

Electrodynamics: The Finite-Difference Time-

Domain Method, 3rd ed., Artech House, 2005. 

2. Edelvik, F., Ledfelt, G., Lötstedt, P., and Riley, 

D.J., “An unconditionally stable subcell model for 

arbitrarily oriented thin wires in the FETD 

method”, IEEE Trans. Antennas and Propagation, 

Vol. 51, No. 8, August 2003, pp. 1797-1805. 

 

 

 

 


