



# State-of-Charge (SOC) governed fast charging method for lithium based batteries

Fahmida Naznin M/s. TVS Motor Company Ltd. Hosur, Tamilnadu





# Hybrid technology & battery requirement



#### **References:**

- 1. Battery Market Development: Materials Requirements and Trends 2012-2025; Christophe Pillot, Director, Avicenne Energy; Advanced Automotive Battery Technology, Application and Market Symposium 2013
- 2. Plug-in Hybrid and Battery-Electric Vehicles: State of the research & development and comparative analysis of energy & cost efficiency; Nemry F. et.al.; JRC ITPS technical notes



Need of fast charging

#### **Comparison of energy sources: Gasoline powered vs. battery powered**

| Energy Source     | Energy Density <sup>1</sup><br>(Wh/kg) | Charging Time <sup>2</sup> | No. of Cycles |
|-------------------|----------------------------------------|----------------------------|---------------|
| Gasoline          | ~ 4,000                                | ~ 5-10 min <sup>3</sup>    | N/A           |
| Lead Acid Battery | 80 - 100                               | 4 – 6 hrs.                 | 800-1000      |
| Lithium Battery   | 400 - 500                              | 2 – 3 hrs.                 | ~ 2000        |
| Fuel-cell         | ~ 19,000                               | ~ 15-30 min <sup>3</sup>   | N/A           |
| Ultra-capacitor   | 5 - 10                                 | 0.3 – 30 s                 | ~ 500,000     |

<sup>1</sup>: practical energy density based on system efficiency

<sup>2</sup>: based on widely used conventional methods

<sup>3</sup>: re-fueling time

Conventional CC-CV algorithm takes ~2-3 hrs. to completely charge a battery









#### Charging using conventional CC-CV algorithm





![](_page_5_Picture_0.jpeg)

![](_page_5_Picture_1.jpeg)

![](_page_5_Figure_2.jpeg)

![](_page_5_Picture_3.jpeg)

![](_page_6_Picture_0.jpeg)

![](_page_6_Picture_1.jpeg)

➢ Most fast charging methods have detrimental effect on battery life

![](_page_6_Picture_3.jpeg)

Lithium plating on graphite Anode

![](_page_6_Picture_5.jpeg)

Dendrite growth

![](_page_6_Picture_7.jpeg)

Separator puncture & Internal short-circuit due to dendrite growth

![](_page_6_Picture_9.jpeg)

![](_page_7_Picture_0.jpeg)

- $\checkmark$  SOC governed fast charging algorithm
- $\checkmark$  Different charging stages to account for the varying internal impedance
- $\checkmark$  More setting time to smoothen out conc. gradients on anode surface
- ✓ Controlled charging for better safety

![](_page_7_Figure_6.jpeg)

#### Lithium Ion Cell Operating Window

#### **References:**

- 1. Paryani et.al.; Fast charging of battery using adjustable voltage control; US 2011/0012563 A1; Tesla Motors Inc. (US), 2011
- 2. <u>www.electropaedia.com</u>

![](_page_8_Picture_0.jpeg)

![](_page_8_Figure_2.jpeg)

![](_page_8_Figure_3.jpeg)

![](_page_8_Picture_4.jpeg)

![](_page_9_Picture_0.jpeg)

#### Stage 2: Multiple CC-CV charging ( $50 \le SOC \le 80$ )

**CONFERENCE, BANGALORE 2013** 

![](_page_9_Figure_3.jpeg)

![](_page_9_Picture_4.jpeg)

![](_page_10_Picture_0.jpeg)

#### Stage 3: Multiple CC charging ( $80 \le SOC \le 95$ )

![](_page_10_Figure_3.jpeg)

![](_page_11_Picture_0.jpeg)

# **Development of the charging method** (contd.)

#### Stage 4: CV charging ( $95 \le SOC = 100$ )

![](_page_11_Figure_3.jpeg)

![](_page_12_Picture_0.jpeg)

Proposed charging method Cı  $C_2$ L21 V21 L22 V22 I2N V2N **I**14 Current **I**31 I13 **I**12 **I**32 In .∕Ic<=0.05C D<sub>2</sub>c ∠ **I**32<sup>¬</sup> **R**32 In 7 In-D32 d32 dín Dín I12 R'n **R**31 d31 D31 **d**12 **D**12 **R**12  $\begin{array}{ll} C_1: \ m\text{-}CC_i \ ; & 0 = SOC < 0.5 \\ C_2: \ m\text{-}(CC\text{-}CV); & 0.5 \leq SOC < 0.80 \end{array}$  $C_3$ : m-CC<sub>r</sub>; 0.80  $\leq$  SOC < 0.95  $C_4$ : CV;  $0.95 \le \text{SOC} = 1$ 

![](_page_13_Figure_0.jpeg)

![](_page_14_Picture_0.jpeg)

## Cell characteristics

| Cell chemistry                           | LiC <sub>6</sub> /LiMn <sub>2</sub> O <sub>4</sub> |
|------------------------------------------|----------------------------------------------------|
| Cell capacity, C                         | 10Ah                                               |
| Charge cut-off voltage, $V_{max}$        | 4.2V                                               |
| Discharge cut-off voltage, $V_{min}$     | 3.0V                                               |
| Charge cut-off current, I <sub>min</sub> | 0.05C (5A)                                         |

#### > Dependent variables

Solid phase potential,  $\phi_s$ Electrolyte potential,  $\phi_1$ Electrolyte salt concentration,  $c_1$ 

> Material properties of the domain materials have been derived from that Material Library

![](_page_14_Picture_7.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

## 1D lithium-ion battery model using "Batteries and Fuel cells module"

Consists of 5 domains:

 ve current collector (Copper) of length L\_neg\_cc
 ve electrode (Li<sub>x</sub>C<sub>6</sub>) of length L\_neg

 Separator with electrolyte (1:1 EC:DEC in LiPF<sub>6</sub> salt) of length L\_sep
 +ve electrode (Li<sub>1-x</sub>Mn<sub>2</sub>O<sub>4</sub>) of length L\_pos
 +ve current collector (Aluminum) of length L pos cc

![](_page_15_Figure_4.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

# **Governing equations**

| Governing<br>equation              | Physics                                                                      | Applied to                                                  | Expression                                                                                                                                                    |
|------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Butler-Volmer                      | Electrode kinetics                                                           | +ve & -ve electrodes                                        | $J_n = \frac{i_0}{F} \left[ \exp\left(\frac{\alpha_a F \eta}{RT}\right) - \exp\left(\frac{-\alpha_c F \eta}{RT}\right) \right]$                               |
| Ohm's law<br>(liquid phase)        | Charge balance of Li <sup>+</sup><br>in electrolyte                          | Electrolyte region in<br>separator, +ve & -ve<br>electrodes | $i_{l} = -\sigma_{l,eff} \nabla \phi_{l} + \frac{2RT\sigma_{l,eff}}{F} \left(1 + \frac{\partial lnf}{\partial lnc_{l}}\right) (1 - t_{+}^{0}) \nabla lnc_{l}$ |
| Ohm's law<br>(solid phase)         | Charge balance of Li <sup>+</sup><br>in the solid matrix                     | +ve & -ve electrodes                                        | $i_s = -\sigma_{s,eff} \nabla \phi_s$                                                                                                                         |
| Fick's second law (liquid phase)   | Diffusion in electrolyte                                                     | Electrolyte region in<br>separator, +ve & -ve<br>region     | $\epsilon_l \frac{\partial c_l}{\partial t} = \frac{\partial}{\partial x} \left( D_{l,eff} \frac{\partial c_l}{\partial x} \right) + (1 - t^0_+) a_s J_n$     |
| Fick's second law<br>(solid phase) | Intercalation / diffusion<br>of Li <sup>+</sup> into the active<br>materials | +ve & -ve electrodes                                        | $\frac{\partial c_s}{\partial t} = D_s \left[ \frac{\partial^2 c_s}{\partial r^2} + \frac{2}{r} \left( \frac{\partial c_s}{\partial r} \right) \right]$       |
| Double layer capacitance           | Film formation on electrode surface                                          | +ve & -ve electrodes                                        | $i_{dl} = \left(\frac{\partial \phi_s}{\partial t} - \frac{\partial \phi_l}{\partial t}\right) a_{dl} C_{dl}$                                                 |

![](_page_16_Picture_4.jpeg)

![](_page_17_Picture_0.jpeg)

![](_page_17_Picture_1.jpeg)

# **Boundary conditions**

| Physics Applied at                                                                                 |                                                                    | Expression                                                                    |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| No flux condition                                                                                  | -ve electrode   -ve current-<br>collector interface                | $\frac{\partial c_{s,n}}{\partial x}_{x=L\_neg\_cc} = 0$                      |  |
| No flux condition                                                                                  | +ve electrode   +ve<br>current-collector interface                 | $\frac{\partial c_{s,n}}{\partial x}_{x=L\_neg\_cc+L\_neg+L\_sep+L\_pos} = 0$ |  |
| No flux condition                                                                                  | Center of active material<br>particles in +ve & -ve<br>electrodes  | $\frac{\partial c_s}{\partial r_{r=0}} = 0$                                   |  |
| Flux is equal to the rate of<br>generation / consumption<br>of Li <sup>+</sup> at particle surface | Surface of active material<br>particles in +ve & -ve<br>electrodes | $\frac{\partial c_s}{\partial r}_{r=r_p} = J_n$                               |  |
| Electric ground                                                                                    | -ve electrode                                                      | $\phi_s _{x=0} = 0$                                                           |  |
| Applied current density                                                                            | +ve electrode                                                      | $\phi_{s} _{x=L\_neg\_cc+L\_neg+L\_sep+L\_pos+L\_pos\_cc} = -i\_app$          |  |

![](_page_17_Picture_4.jpeg)

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

## Modeling charging methods using "Events interface"

• **Explicit Event**: Occurs at predetermined times

Can be repeatedly invoked until the desired condition is fulfilled  $C_1$  and  $C_3$  stages modeled using explicit events

- Implicit Event: Occurs when a condition involving an indicator state is fulfilled C<sub>2</sub> and C<sub>4</sub> stages modeled using implicit events
- Discrete states: Describes the individual steps in a load profile Needs to be used for both implicit and explicit events e.g. OCV, C1\_CC\_CH1, C1\_CC\_CH2, C2\_CC\_CH1, C2\_CV\_CH1, etc.
- Indicator states: Indicates the conditions that needs to be fulfilled to switch from one step to another To be used only for implicit events

| e.g. | Step change            | Condition                 |  |
|------|------------------------|---------------------------|--|
|      | c2_cc_ch1_to_c2_cv_ch1 | C2_CC_CH1*(t-(t+20))      |  |
|      | c2_cv_ch1_to_c2_cc_ch2 | C2_CV_CH1*(SOC-(SOC+0.5)) |  |
|      | c2_cc_ch2_to_c2_cv_ch2 | C2_CC_CH2*(t-(t+50))      |  |

![](_page_18_Picture_9.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

## Modeling charging methods using "Events interface" (contd.)

- Applied current is defined using a global ODEs and DAEs interface
   e.g. i\_C1\_1 = C1\_CC\_CH1\*(i\_ch11-i\_C1\_1) + !C1\_CC\_CH1\*i\_C1\_1
   i\_C1\_2 = C1\_CC\_CH2\*(i\_ch12-i\_C1\_2) + !C1\_CC\_CH2\*i\_C1\_2
   i\_C2 = C2\_CC\_CH1\*(i\_ch2-i\_C2) + C2\_CV\_CH1\*(E\_cell-E\_max1) + .....+
   !C2\_CC\_CH1\*!C2\_CV\_CH1\*.....\*i\_C2
- Shift from one stage to another depends on the SOC of the cell, given by

$$SOC = \frac{\int c_s \, dS}{c_{s,max}L}$$

e.g.  $i_C11 = i_C1_1*(SOC<0.3)$  $i_C12 = i_C1_2*(SOC>0.3)*(SOC<0.5)$  $i_C20 = i_C2*(SOC>0.5)*(SOC<0.8)$ 

• Applied current is defined as

 $i_app = i_C11 + i_C12 + \dots + i_C20 + i_C31 + i_C32 + \dots + i_C40$ 

![](_page_19_Picture_9.jpeg)

# **TVS** Charging profile modeled using Comsol Multiphysics 4.3b

![](_page_20_Figure_1.jpeg)

![](_page_21_Picture_0.jpeg)

![](_page_21_Picture_1.jpeg)

# **Constant-current constant-voltage (CC-CV) charging**

![](_page_21_Figure_3.jpeg)

| Charging<br>stage   | Charging current                                                                                                                                                                           | Step limit                                | Charging<br>time (s) |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|
| Constant<br>current | 0.5C (5A)                                                                                                                                                                                  | till the cell<br>reaches V <sub>max</sub> | 4460                 |
| Constant<br>voltage | $\begin{array}{c c} 0.5C (5A) \text{ to} \\ 0.05C (0.5A) \end{array} \qquad & \textcircled{@} V_{max} \text{ till the} \\ \text{charging current} \\ \text{drops to } I_{min} \end{array}$ |                                           | 3540                 |
| Total charging time |                                                                                                                                                                                            |                                           | 8000                 |

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

#### **References:**

- 1. Notten et.al, Method and charger for boost charging a rechargeable battery on the basis of a physical model, US2010/0148731 A1, 2010
- 2. Notten P.H.L. et.al, Boost-charging Li-ion batteries: A challenging new charging concept, Journal of Power Sources, 145, 89-94 (2005)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

## Multistage constant-current constant-voltage, m(CC-CV) charging

| Charging<br>stage   | Charging<br>current          | Step limit                                                                                  | Charging<br>time (s) | 4 Cell voltage (V)                         |
|---------------------|------------------------------|---------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|
| Constant<br>current | 2C (20A)                     | till the cell reaches $V_{0.8}$                                                             | 550                  | 3.5 Charging current * 0.1 (A)             |
| Constant<br>voltage | 2C (10A) to<br>0.7C (7A)     | <ul> <li><i>(a)</i> V<sub>0.8</sub> till the charging current drops to 0.7C (7A)</li> </ul> | 550                  | tu 3<br>Curación<br>2.5<br>Curación<br>2.5 |
| Constant<br>current | 0.7C (7A)                    | till the cell reaches $V_{max}$                                                             | 750                  |                                            |
| Constant<br>voltage | 0.7C (7A) to<br>0.05C (0.5A) | @ V <sub>max</sub> till the charging current drops to I <sub>min</sub>                      | 3600                 | 1 0.5                                      |
|                     |                              | Total charging time                                                                         | 5400                 | 0 1000 2000 3000 time (see) 5000 6000 70   |

Multiple Constant current-Constant voltage (m-(CC-CV)) charging

#### **References:**

- 1. Paryani et.al, Fast charging of battery using adjustable voltage control, US2011/0012563 A1, 2011
- 2. Tomohisa Hagino, Pulse charging method for rechargeable batteries, US5808447, 1998

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

# **Comparison of charging methods**

- $\checkmark$  Simulation has been carried for 500 cycles
- ✓ Capacity fade as a result of cycling
- ✓ Initial capacity: 10Ah

| Charging<br>method    | Charging<br>time (s) | Cell capacity after<br>500 cycles (Ah) | Capacity fade (%) |
|-----------------------|----------------------|----------------------------------------|-------------------|
| CC-CV                 | 8000                 | 9.06                                   | 9.4%              |
| m(CC-CV)              | 5400                 | 8.63                                   | 13.7%             |
| Boost                 | 5000                 | 8.42                                   | 15.8%             |
| Proposed<br>SOC based | 2500                 | 8.96                                   | 10.4%             |

![](_page_24_Picture_7.jpeg)

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

## Advantages of the present method

- ✓ Faster charging
- ✓ Lower capacity fade
- ✓ Lower safety risks due to controlled charging

#### **Future work**

- ✓ Inclusion of side reaction (e.g. SEI formation)
- ✓ Temperature performance
- ✓ 3D modeling to visualize current density distribution on electrode surface

![](_page_25_Picture_10.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

# Queries

![](_page_26_Picture_3.jpeg)

![](_page_26_Picture_4.jpeg)

Slide 27