COMSOL Conference - Tokyo 2013

Development of Hybrid "Fluid Jet / Float" Polishing Process

A. Beaucamp, Y. Namba

Dept. of Mechanical Engineering, Chubu University, Japan

Zeeko LTD, United Kingdom

Research supported by Japan Society for Promotion of Science

Outline

1. Background Information

(X-ray telescopes, Thin mirror replication methods, Fluid Jet Technology)

2. Modeling and Optimization of Fluid Jet Polishing

(Numerical Method, Optimization Method, Experimental Results)

3. Hybridization of Float and Fluid Jet Polishing

(Rationale for research, Scalability of FJP, Float polishing, Hybridization)

4. Conclusions

Background: Short story of X-ray space telescopes

X-ray Astronomy: Making an X-ray Telescope.

• Standard lenses and mirrors cannot be used, because X-rays are not reflected/refracted!

• But if the angle is very small, then X-rays can be reflected: it is called "Grazing Incidence".

Motivation for future "Aspheric" X-ray Telescopes

<u>Fabrication Method</u> Slumping thin glass over molding dies


```
100KeV - 20arcs
```

Objectives

- Obtain Molding Die Micro-Roughness <0.2nm rms.
- Reduce manufacturing cost per mold! (modern telescope requires > 200 molds)

Goal: ~2020

Background: Principle of Fluid Jet Polishing

- A pumping system is used to deliver abrasive slurry to a nozzle pointing at the work-piece.
- The jet impinges the surface, generating a polishing spot where material removal occurs.
- This spot is moved along a spiral of raster path.

Typical Parameters:

Pressure at nozzle: $4 \sim 20$ Bar Abrasives type: CeO₂, Al₂O₃, SiC

Nozzle diameter: $0.1 \sim 2.0 \text{ mm}$ Abrasives grit: $0.2 \sim 50 \text{ }\mu\text{m}$

Outline

1. Background Information

(X-ray telescopes, Thin mirror replication methods, Fluid Jet Technology)

2. Modeling and Optimization of Fluid Jet Polishing

(Numerical Method, Optimization Method, Experimental Results)

3. Hybridization of Float and Fluid Jet Polishing

(Rationale for research, Scalability of FJP, Float polishing, Hybridization)

4. Conclusions

2. Modeling of Process: Computational Fluid Dynamics

The simulation consists of a jet steam impinging a flat surface along the local normal:

- Features axial-symmetry, offering the possibility to simplify to a 2D problem.
- Experimental conditions can be easily reproduced in laboratory (bottom-right).

2. Modeling of Process: Multi-Phase Flow Equations

(1) Incompressible <u>Navier-Stokes</u> equation (low pressure, stable temperature):

2. Modeling of Process: Turbulent Flow Model

Model Name	k-e	k-w	SST k-ω
(short) Description	 2 transport equations turbulent kinetic energy <i>k</i> turbulent dissipation <i>ε</i> 	 2 transport equations turbulent kinetic energy <i>k</i> turbulent frequency <i>ω</i> 	Combination of: • <i>k-ω</i> in near wall regions • <i>k-ε</i> in free stream regions
Pros / Cons	+ Numerically robust	 + Superior treatment of near wall regions + Suitable against severe pressure gradients 	 + Well suited for laminar to turbulent flow transitions
	 Valid only if flow is fully turbulent Poor results against severe pressure gradients 	- Flow separation can occur excessively in free stream regions	- Less suitable for free shear flow regions

2. Modeling of Process: Numerical Stability

Balancing the "PDE terms" is sometimes necessary, to avoid numerical instability.

Example: "Run-away Vortices" may arise if viscosity and pressure gradient are not balanced within the stress divergence term. Defining a "transient" viscosity can solve such problem.

3. Optimization of Process: Slurry management system

Fluid Jet Polishing: Waviness Improvement from Process Optimization

Post-polishing of "laser grade" fused silica windows, with 1.5um CeO₂ (1µm removal depth).

Before Optimization rms 16.1 nm

After Optimization rms 1.5 nm

Outline

1. Background Information

(X-ray telescopes, Thin mirror replication methods, Fluid Jet Technology)

2. Modeling and Optimization of Fluid Jet Polishing

(Numerical Method, Optimization Method, Experimental Results)

3. Hybridization of Float and Fluid Jet Polishing

(Rationale for research, Scalability of FJP, Float polishing, Hybridization)

4. Conclusions

Motivation for future "Aspheric" X-ray Telescopes

<u>Fabrication Method</u> Slumping thin glass over molding dies


```
100KeV - 20arcs
```

Objectives

- Obtain Molding Die Micro-Roughness <0.2nm rms.
- Reduce manufacturing cost per mold! (modern telescope requires > 200 molds)

Goal: ~2020

Hybrid Strategy: Float Polishing

Float polishing is a <u>non-contact</u> finishing method (<u>like FJP</u>!)

Roughness < 0.1nm rms routinely achieved (Fused Silica, Silicon, Elct. Nickel)

BUT, it is applicable only to Flat Surfaces.

Hybrid Strategy: Research Plan (2 year Post-Doc funded by JSPS)

Modeling: Float Polishing Process

First, a 3D Computational Fluid Dynamics (CFD) model of float polishing was implemented.

The Navier-Stokes equation with Shear Stress Transport (SST) turbulence was used to compute fluid pressure/velocity.

Fluid shown in Blue, Sample in Green

3D Finite Element Mesh

Modeling: Float Polishing Process

Actual abrasive particle trajectories (and impacts) were calculated by applying Newton's 2nd law.

Fluid Pressure Map

Fluid Velocity Map & Particle Trajectories

Modeling: Fluid Jet Cavity Simulations

Different Nozzle Cavity Geometries were simulated, from simple geometries (cone, cylinder, sphere) to more complex ones (horn, grooved).

Modeling: Nozzle Cavity Optimization

For each cavity type, the <u>geometry was parameterized</u> such that CFD simulations and computation of Impact Distribution Curves could be automated.

Optimization consisted of <u>parametric searches</u> to find the best match between each cavity type and the float polishing process (comparison of Distribution curves).

Optimized design (Grooved cavity with variable pitch/depth)

Conclusions

- Our goal is to keep improving the roughness of Fluid Jet Polishing (currently 1.5nm rms, target < 0.2nm rms).
- A novel Hybrid "FJP/Float" process has been proposed to meet this requirement.
- Numerical simulations were used to derive a FJP cavity nozzle design that approaches removal conditions in Float polishing.
- Future work: Experimental validation of the optimized nozzle cavity design

