

Introduction: Loudspeakers often have to deal with irregular frequency response due to standing waves. Placing rigid absorptive panel in strategic places improves efficiently their reduction smoothing the loudspeaker frequency response.

Results: The simulated Frequency response brings to investigation the behavior i.e in the range of 800Hz.

Figure 1. Section of speaker cabinet

Computational Methods: Two physics were applied to simulate the case in the frequency Acoustic-Shell Interaction domain, and Pressure Acoustics. Equations involved are

Figure 2. Simulated response without panels

Poroelastic material

glass fiber panel of apparent density of 48kg/m³ giving a flow resistance of Rf=11.8k (kg/m³s). While for the wave equation

$$\frac{1}{\rho_0 c^2} \frac{\partial^2 p}{\partial t^2} + \nabla \cdot \left(-\frac{1}{\rho_0} (\nabla p - \mathbf{q}) \right) = Q$$

in the acoustic shell interaction governs the propagation of waves generated by the moving diaphragm which in turn has a force proportional to the current passing in the wire of length I immersed in a magnetic flux B. As the current can be derived by the blocked coil inductance Zb and the driving voltage the Force from the electrical domain can be written as: BLV_0

Figure 3. Behavior at 783Hz without panels

Conclusions: Simulated SPL with panels shows improvements in few regions and such corresponding measurement do confirm the improvements.

Excerpt from the Proceedings of the 2014 COMSOL Conference in Boston