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Puffing: Salient Features
S

® Quick process and a complex interplay of mass,
momentum and energy transport with Large
Deformations

@ Rapid evaporation of water to vapor

@ Phase Transition from Glassy (brittle) to Rubbery
(ductile) state

@ Large volumetric expansion of the kernel due to
Gas Pressure generation and Phase Transition

@ Large Plastic (inelastic) deformation of the
material




Transport Process in Deformable Porous Media
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Transport Process Porous Medial??

Water
* bulk flow/convection
* capillary diffusion
* phase change ~_

7 ‘

Porous material

Gas (Vapor + Air) ,/
* bulk flow
* binary diffusion
* phase change

Element

Whitaker (1997)
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SHalder A et al., (2007)



Transport Process Porous Media
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Momentum Conservation
Darcy Law
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Evaporation-Condensation
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Deformation in Porous Media: Poromechanics?4
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Phase Transition

Glassy Rubbery Textural Attributes

Hard & rigid
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Glass Transition Soft & compliant
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Puffing: Modeling Framework

B
@ Salt-Assisted Puffing carried out at 200°C for 15s

-

Multiphase transport Large Deformations
(Gas Pressure Driven) (Elastic, Perfectly-Plastic Material)

Prediction of Key Quality Attributes

Porosity Microstructure  Volumetric Expansion

@ Driving force of deformation:

> Expansion is driven by gas pressure gradients only, shrinkage due to
moisture loss is neglected




Puffing: Mechanical Properties
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Model implementation
_

Geometry & Boundary Conditions Numerical Solution using COMSOL 4.3b

> A highly-non linear coupled multi-physics
Rice kernel as ‘ problem, convergence issues

prolate spheroid

A 1.3102x10%
=104

Forced Convection Heat Transfer
Moisture Loss through
Evaporation

Free Surfaces for Deformation

a=0.5x10%m Mesh inverts and leads to convergence problems
b=575x10%m

2D Axisymmetric

> Large strain plasticity adds additional level
------ of numerical challenge,

> No axial displacement > Need to play extensively with default

> Insulated for Energy and solver features of the software
Moisture transfer




Puffing: Model validation
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Puffing: Actual and Simulated Expansion

Actual volume expansion




Puffing: Porosity and Microstructure Development
_ 1

Experiment
0.74

0.8
0.7

0.6

= Model
e+ 0,751

03

0.2

0.1

14



Puffing: Simulated Process
S
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Puffing: Expansion Ratio as a Quality Parameter
|

Salt preconditioning is done to increase volumetric expansion

® Addition of salt:

> Decreases the Glass Transition Temperature of the material
> Increases expansion ratio by at least 15% (found experimentally)
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Puffing: Summary & Potential Applications

Physics: High temperatures cause rapid evaporation of water
generating large gas pressures within and, Rubbery-Glassy Phase
Transition of the material.

Key Observations: Rice puffs from the tip where it Glass
Transitions. The expansion front moves inwards eventually causing
the entire kernel to puff. Pore formation follows a similar trend

Process Optimization: Salt preconditioning increases the
expansion ratio of the kernel

Model Extension: Other puffing type processes using hot oil, gun
puffing, extrusion and microwave puffing. Starch based-foamed
plastics in the chemical process industry
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Thank You

Any questions?
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