

COMSOL CONFERENCE 2014CURITIBA

Design of an Electrodynamic Levitation System with COMSOL Multiphysics® Software

Hugo P. Ferreira

Alan D. M. Endalécio

Elkin F. Rodriguez

Richard M. Stephan

Laboratory of Applied Superconductivity (LASUP/COPPE)

Summary

- 1) Introduction
- 2) Magnetic Levitation
- 3) Objectives
- 4) Electrodynamic System
- 5) Experimental Tests
- 6) FEM Modeling
- 7) FEM Simulations
- 8) Results
- 9) Conclusions

Introduction

- The levitation phenomena, besides its fascinating appearance, has found important applications in several areas:
- 1. Microgravity systems
- 2. Material sciences
- 3. Transportation
- 4. Industrial solutions

5. Pharmaceutical applications

Introduction

- These applications can be achieved by several techniques:
- 1. Aerodynamic
- 2. Acoustic
- 3. Optical
- 4. Electrostatics
- 5. Magnetic Levitation
- 6. Radio-Frequency

Magnetic Levitation

- Electrodynamic Levitation (EDL)
- Electromagnetic Levitation (EML)
- Superconducting Magnetic Levitation (SML)

Objectives

- Development of an electrodynamic levitation experiment for engineering education, that can be supplied by the grid voltage.
- Training of students based on a multidisciplinary experiment that combines diferent subjects (electromagnetism, mechanics, control), experimental work and numerical simulation.

Electrodynamic System

	Mass	Dimensions
Aluminum	23,5 g	3,1 x 1,6 x 1,9 cm
Copper	56,9 g	2,8 x 1,6 x 1,9 cm

Experimental Tests

Levitation observed:

- Aluminum ring: 250 V
- Copper Ring: 450 V

At 450 V and 60 Hz:

- Levitation of aluminum: 9.9 cm
- Levitation of copper: 6.0 cm

FEM Modeling

- Complex geometry
- Non-linear effects on ferromagnetic material
- Skin effect on conductors
- Electric and Magnetic boundary conditions

FEM Modeling

- 2D Axisymmetric
- Magnetic Physics Interface AC/DC Module
- Muti-turn Coil Domain
 - Vcoil = 450 V
- Aditional Ampère's Law ($\mu = 10000$)
- Force Calculation
- Frequency Domain (f = 60 Hz)

FEM Simulations

FEM Simulations

- To achieve levitation at 127 V:
- New Configuration: 127 V, 15 Hz

Results

• At 127 V and 60 Hz

Results

Results

Conclusions

- COMSOL Multiphysics[®] is an excellent tool to simulate and design electrodynamic levitation systems.
- This electrodynamic levitation system is an good experiment for introduce undergraduate students to advanced topics of research (Finite element method and magnetic bearings).

Acknowledgements

To CNPq, FAPERJ and UFRJ for the financial support.

Thank you for your attention!