Tunable Fano-Resonance in Terahertz Metamaterials Bagvanth Reddy Sangala¹, Harshad Surdi¹, Prathmesh Deshmukh¹, Goutam Rana², Achanta Venu Gopal¹, and S. S. Prabhu¹

Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai, MH 400005 2. Department of Electrical Engineering, IIT Bombay, Mumbai, MH 400076

Introduction: Metamaterials are designed with metal and semiconductor inclusions. The asymmetric shaped transmission dip in metamaterials, called "Fano-resonance," can have high quality and high field enhancement. We designed a metamaterial with tunable Fano-resonance for terahertz radiation. It can be used to do nonlinear THz spectroscopy at tunable Fano-resonance frequencies.

Results: We fabricated the designed metamaterial by electron beam lithography and characterized it by terahertz time-domain spectroscopy.

Slice: Electric field norm (V/m) Arrow Line: Current density		
×10 ⁻³	▲ 3×10 ⁷ ×10 ⁶ 2	
-20 0 20	1.8	

Unit cell type	Center frequency [THz]	Quality factor	Reference
Asymmetric square SRR	1.72	93	Optics Express 18 13044 (2010)
Asymmetric square SRR with an extra cut	1.14	227	Optics Letters 37 3366 (2012)
Ring with two asymmetric cuts	0.86	50	Optics Express 19 6312 (2011)
Concentric two ring slots	0.42	40	Optics Express 22 3747 (2014)

Figure 1. High quality THz Fano-resonances. **Table 1**. Literature survey of the existing
 Fano-resonances in metamaterials.

Methods: Computational We RF used

Figure 3. Electric field norm Figure 4. An SEM image and current density at 1.25 THz. of the metamaterial.

module of COMSOL® for the simulations. We created a CAD for the metamaterial unit cell with concentric ring pads of Gold on GaAs periodic boundary substrate. We used conditions along x and y directions and shone light using port boundary condition with electric field

$$\vec{\mathrm{E}}_{i} = \mathrm{E}_{\mathrm{o}} \Big[\cos(\theta) \hat{x} + \sin(\theta) \hat{y} \Big] \exp(-ik_{z}z).$$

We solved for the S parameters at various frequencies to get THz wave transmission and reflection.

Figure 5. Comparison of terahertz transmission from COMSOL[®] simulations and terahertz time-domain Spectroscopy for two orthogonal polarizations of the incident terahertz radiation.

Conclusions: In simulations, the Fanoresonances occurs at 1.25 THz and 1.5 THz for x and y polarized lights and in the experimental data, they occur at 1 THz and 1.1 THz respectively. The discrepancy in experimental and simulations results could be due to change in the material properties. An enhancement of the field by 10⁶ was observed at Fano-resonance in some parts of the metamaterial.

Figure 2. Metamaterial unit cell: Gold ring pads on Gallium Arsenide. Width of Gold Pads=2 µm. Height of the pads=150 nm.

Excerpt from the Proceedings of the 2014 COMSOL Conference in Bangalore

Reference:

1. Jie Shu Weilu Gao et al., Optics Express **22** 3747 (2014).