A NUMERICAL MODEL FOR ELECTROPORATION IN BACTERIA

J.L. Moran, P.A. Garcia, N.N. Dingari, C.R. Buie Department of Mechanical Engineering Massachusetts Institute of Technology October 8, 2015

Electroporation

Electroporation is governed by the <u>Transmembrane Voltage (TMV)</u>

 $V_m = 1.5 ER \cos \theta$

Schwan 1957, Tsong, Biophysical Journal, 1990.

J.C. Neu, W. Krassowska, Phys. Rev. E, 1999.

Our Focus: Transformation of Bacteria

Deepwater Horizon Oil Spill Credit: Getty Images

Microbial Fuel Cell Schematic Credit: Logan, B. *Nature Rev. Microbio.* 2009

- Electroporation protocols exist for a tiny fraction of bacteria on earth
- Goal: understand the principles governing successful DNA transfer into bacteria
- Here: COMSOL model to understand effect of bacterial physiology on electroporation

Bacterial Physiology

Pili on the surface of an Escherichia coli bacterium

www.daviddarling.info/encyclopedia/P/pilus.html

micro.magnet.fsu.edu/cells/procaryotes/images/procaryote.jpg

- Outside the (inner) plasma membrane, most bacteria exhibit a "soft layer" consisting of (e.g.) fimbriae, sex pili, capsules, flagella, etc.
- The soft layer generally carries a net charge
- Charge distribution in the soft layer affects polarizability (Dingari & Buie, 2014)

Governing Equations

• Electric potential inside/outside cell (σ = conductivity)

$$\nabla \cdot \left(\sigma + \varepsilon_0 \varepsilon_r \frac{\partial}{\partial t} \right) \nabla \phi = 0$$

Transmembrane voltage (TMV)

$$V_m \equiv \left(\phi_{inside} - \phi_{soft}
ight)_{membrane}$$

Pore creation/destruction rate

Pore radius evolution

lipid heads

membrane/liquid interfacial tension

Protein channels Current through electropores Capacitive charging DeBruin & Krassowska, Biophys. J. 1999 (Part I) Pucihar, Miklavcic & Kotnik, IEEE Trans. Biomed. Eng. 2009

Numerical Implementation

- COMSOL Multiphysics
- 2D axisymmetric geometry
- 36,353 mesh elements
- Time-dependent solve (through pulse duration)

SEM of E. coli (Wikimedia commons)

Induced Transmembrane Voltage

All data shown at *t* = 1 ms (pulse truncated) Insets show TMV vs. time at positive-facing pole 8

Pore Density vs. Position

Insets show mesh used for each case

9

Pore Radius vs. Position

All data shown at *t* = 1 ms (pulse truncated) Insets show mesh used for each case

Total Pores, Average Radius

Both the number and the size of pores created depend more strongly on buffer concentration when the soft layer is present

All data shown at *t* = 1 ms (pulse truncated)

Conclusions

- The presence of a soft layer tends to **amplify** the effect of varying background conditions (e.g. conductivity) on the pore size and number
- This work elucidates the effect of buffer concentration on bacterial electroporation

Ongoing Work

- Enhance model of soft-layer transport to include
 - Dissociation of pH-dependent ionogenic groups
 - Donnan potential
- Explore correlation between electroporation amenability and cell envelope properties (e.g. polarizability)

Thank you

Simulation Details

Customized Mesh