Optimization of Insulator-Based Dielectrophoretic Devices

M. A. Saucedo-Espinosa¹, M. Rauch² and B. H. Lapizco-Encinas²

1. Rochester Institute of Technology, Microsystems Engineering, Rochester, NY, USA

2. Rochester Institute of Technology, Biomedical Engineering, Rochester, NY, USA

Introduction: Insulator-based dielectrophoresis (iDEP) employs arrays of insulator posts to create forces that affect particle movement (Fig. 1) [1]. The ambitious goal is the integration of several laboratory functions in sub-milimetric devices. However, iDEP devices need hundred of volts to perform particle separation [2].

Figure 1. Microchannel with arrays of cylindrical insulator posts.

Methods: Computational The AC/DC module was used to estimate particle net force and velocity in a number of systems varying the geometrical parameters.

Devices including optimal lateral spacing (from Figure 5)

OPTIMAL DESIGNS Devices including optimal post width (from Figure 6) Lowest electric potentia

Figure 6. Experimental band of trapped 2-µm particles.

Results: The parametric variation was used to design pseudo-optimal devices that enhance particle trapping and enrichment, decreasing the operational voltage.

Conclusions: The importance of the geometrical parameters of iDEP devices was characterized. The voltage requirement was decreased in almost 84% for the best case (squared-shaped post).

References:

1. S. Masuda, M. Washizu, T. Nanba, Novel method of Cell Fusion in Field Constriction Area in Fluid Integrated Circuit, IEEE Transactions on Industry Applications, 25(4), 732-737, (1989). M.A. Saucedo-Espinosa, B.H. Lapizco-Encinas, Experi-2. mental and theoretical study of dielectrophoretic particle trapping in arrays of insulating structures: Effect of particle size and shape, Electrophoresis, 36(9-10), 1086-1097, (2015).

Figure 2. Post length effect. Figure 3. Hor. spacing effect.

Acknowledgements: The authors would like to acknowledge financial support from the National Science Foundation (Award CBET-1336160), the Mexican National Council on Science and Technology (PhD Scholarship for MASE) and the United States-Mexico Commission for Educational and Cultural Exchange (Fulbright-Garcia Robles Scholarship for MASE).

Excerpt from the Proceedings of the 2015 COMSOL Conference in Boston