

Cooling and hardening during injection molding of field joint coatings for deep sea pipelines

<u>Robrecht Verhelle¹</u>, Luk Van Lokeren^{1,2}, Samir Loulidi¹, Guy Van Assche¹,

Guido Ridolfi³, Helen Boyd³

¹ Vrije Universiteit Brussel, Physical Chemistry and Polymer Science, Belgium

² Materials Innovation Institute, The Netherlands

³ Heerema Marine Contractors, The Netherlands

COMSOL CONFERENCE 2015 GRENOBLE

Field joint coating application process

Pipe sections Welded together

Surface cleaning Grit blasting

FBE application Injection moulding Corrosive protection Thermal insulation

Field joint Needs cooling

Field joint coatings for deep sea pipelines

Challenges:

- Insufficient bonding and cracks
- Processing optimization

Aim:

- 1. Understanding FJC process
- 2. Support optimization FJC process:
 - Materials
 - Process conditions

Approach:

- 1. Build a FEM model
- 2. Acquire experimental data

Geometry

Field joint coating (FJC)

Factory applied coating (FAC)

Purpose: obtain realistic T-distributions for cooling and crystallisation

1. Induction heating

2. Cooling

3. Infrared heating

Natural convection: long horizontal cylinder

Potential degradation polymer at toe

1. Induction heating

- Domain heat scource
- T_{max} steel reached 260°C

A 6.5

▼ 6.5

Purpose: obtain realistic T-distributions for cooling and crystallisation

2. Cooling

3. Infrared heating

2. Cooling + FBE application

- FAC acts as heat sink
- T_{max} steel 235°C

Purpose: obtain realistic T-distributions for cooling and crystallisation

1. Induction heating

2. Cooling

3. Infrared heating

3. Infrared heating chamfers

- Domain heat scource
- Beer-Lambert law
- T_{max} at middle chamfer 100°C

Simulation pretreatment steps vs. experimental data

Cooling and crystallization: principles polymer crystallization

Polymer crystal morphology

- Folded chain lamellar (single) crystals
- Lamellar thickness L_{lam}:

Differential scanning calorimetry in cooling

Polymer crystallization kinetics

Crystallization kinetics model: description

Haudin & Chenot model¹:

Nucleation

$\frac{dN}{dt} = -N\left(q + \frac{1}{1-\alpha}\frac{d\alpha}{dt}\right) + (1-\alpha)\frac{dN_0(T)}{dT}\frac{dT}{dt}$	N number of potential nuclei
$\frac{dN_a}{dt} = qN \qquad \qquad \frac{d\widetilde{N}_a}{dt} = \frac{qN}{1-\alpha}$	N _a number activated of potential nuclei

Growth

 $\frac{d\alpha}{dt} = 4\pi (1-\alpha)G(F^2 \tilde{N}_a - 2FP + Q) \qquad \alpha \text{ relative crystallinity}$

Aid functions

dF _	$dP \ d\tilde{N}_a \ qN$	$dQ = d\tilde{N}_a = qN$
$\frac{1}{dt} = G$	$\frac{dt}{dt} = F \frac{dt}{dt} = F \frac{dt}{1 - \alpha}$	$\frac{dt}{dt} = F^2 \frac{dt}{dt} = F^2 \frac{dt}{1 - \alpha}$

Implemented in COMSOL using domain ODEs

Domain heat source for crystallization heat:

$$Q_0 = \Delta H_{cryst} \rho \frac{d\alpha}{dt}$$

Crystallization kinetics model: instabilities

Cooling and crystallization: in mold

Short injection time

$$T_{mold} = 15^{\circ}C$$

$$T_{FJC} = 220^{\circ}C$$

$$Large \Delta T$$

$$Mesh refinement at boundaries
$$DOF^{\circ} = 290571$$$$

Natural convection: long horizontal cylinder Symmetric boundary FJC FAC Steel Convective cooling Infinite element domain Temperature 00 50 00 ▼ 6.03 Crystallinity ▲ 1.1×10⁻⁵ 0.8 0.6 0.4 0.2 ▼1.1×10⁻⁵

Cooling and crystallization: in air

Short injection time

$$\begin{bmatrix} T_{mold} = 15^{\circ}C \\ T_{FJC} = 220^{\circ}C \end{bmatrix}$$
 Large ΔT

Mesh refinement at boundaries DOF: 290571 Demold after minutes

After hours still liquid in center Thickness of the crystallized layer compares favorably to experiment

Natural convection: long horizontal cylinder

Cooling and crystallization: model vs. experimental

Extension of the Model: Estimation Stresses

Heat transfer Thermal shrinkage

Crystallization Crystallization shrinkage Structural mechanics — Stress calculations

Implementation Comsol

Modules:

- Heat transfer
- Structural Mechanics

Thermal expansion

Linear elastic material: Polymer: modulus T and α dependent

Crystallization shrinkage via α dependent initial strain

Extension of the Model: Estimation Stresses

Crystallinity (top) and stress (bottom) distributions upon demolding

Approximation:

Linear elastic material

Visco-elastic material

Extension of the model: reactive systems

Curing polymer systems: polyurethanes

Cure kinetics – autocatalytic model with diffusion control

Middle of the FJC (weld): steel pipe, IMPU inner skin (1 mm), center, IMPU outer skin (1 mm)

Observation: (nearly) adiadiabatic temperature rise in center

Heat transfer and phase change model

- Crystallization kinetics model
 T-dependent nucleation and growth
 Variable transformations to avoid numerical errors
- Start of induced stress calculations

Conclusions

Modelling opportunities

Optimisation

- Process
 - pretreatment steps
 - injection moulding
- Material
- Geometry

Enriching lives through innovation

