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Introduction

e Topology Optimization: mathematical approach that optimizes the
material layout within a given design space and boundary conditions.
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Introduction

e Downhole Tool: cylindrical robotic tool used to increase or restore the
production of oil and gas wells (well cleaning, pipe cutting, installation of

o

valves).

TEC - Thermoelectric (Peltier) cooler:
upgrade the maximum operating temperature from

175° Cto 200° C.
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Problem formulation

Metallic o
housing Optimizable TEC Heat spreader +
(o.d. 80mm) chassis soft thermal pad
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Design Criteria:

e Use aluminum to enhance

AxigheSecinare! Hast deRIR
tools twlgajented geometry.

« Use thermal insulation to
protect the cooled
electronics.

= Optimize the distribution of aluminum-thermal insulation within the chassis

= Minimize the average PCB temperature
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Governing equations

e Heat conduction

& Heat Transfer in Selids (ht)

e Modified heat conduction

A Coefficient Form PDE ()

V(_kVT) = Qsource

V(JST — kVT) = Q,

Convective heat flux
(Tayiar h)

% Boundary conditions
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Topology Optimization Implementation

(SIMP method)
. 1
minimize: fobj (T, pdesign) = Efﬂpca T dQpcp (3)
@ Optimization (opt)
constraints: 0 < pgesign <1 (4)
p

(5)

Hu Coefficient Form PDE 2}

@ Optimization (opt)
Do Density filter = Projection function
design P
f(r) p(n,B)
-:_x-.L Analytic1 (fun)

ksimp= kins + (kAl - kins)ﬁp
15 October 2015

interpolation function:

2= Variables
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Simulation results

>
—
interpolation function: koimp = Kins + (ka; — kins) PP (5)
2= Yariables
Surface; HSPr{rho_filtered) o P —— -
A 0.29
_xlo"
p(n,B=1)
2.86 L
" p(n,B = 8)

Ieg =4 A h =50 Wm2K1
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Simulation results

"

Thuig = 200 ° C h = 25, 50, 100, 500 Wm2K-! Iew=1,2,3,4A

p optimized distribution
Iny=2A h =100 Wm-2K-1

Design 1

¥ 9.78x107

Low Iy / High h

Aluminum pad length grows with
It..q @nd decreases with h.
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« Aluminum layer thickness grows
with Ir.s and decreases with h.
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Choice of the final design

; Axial section of the finally
chosen design.
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Op De 0 A
25 182.31 181.95 0.10
50 179.32 178.97 0.11
100 177.83 177.47 0.11
500 176.56 176.21 0.11
h Opt - 2A Design - 2A
(Wm2K1)  Tpe (° C) Tpce (° C)
25 175.63 175.68 0.05
50 168.18 168.23 0.05
100 164.54 164.57 0.04
500 161.46 161.48 0.03
Op De 0 A
25 188.22 188.93 0.71
50 171.48 171.87 0.39
100 163.68 163.90 0.22
h Opt - 4A Design - 4A
(Wm-2K) Tpce (© C) Tpce (© C)
228.62 233.59
50 192.79 195.71 2.92
100 177.25 179.29 2.04
500 165.23 166.37 1.14

AT = TPCB,design - TPCB,Opt
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Conclusions

e The topology optimization (SIMP) approach supported the development
of a chassis for actively cooled downhole electronics.

e Two main design concepts were found and analyzed.

e A parametric study evaluated the sensitivity of the optimized topologies
to the boundary conditions.

e The final design was defined according to the optimization results and
proved to perform very closely to the optimized systems.

11 DTU Energy, Technical University of Denmark 15 October 2015

I



12

Thank you for the attention
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W

COMSOL Multiphysics representation of the longitudinal section of the downhole tool (left side) and particular of the TEC
device with the two plates and the semiconducting material layer highlighted in blue (right side).
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Governing equations

Heat conduction
& Heat Transfer in Selids (ht)

Modified heat conduction
A Coefficient Form PDE ()

V(_kVT) = Qsource

V(JST — kVT) = Q,

Convective heat flux
(Tayiar h)

% Boundary conditions
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Cross-Check analysis

I

Evaluate the performance of the optimized designs at different boundary conditions

The optimization process is negligibly
sensitive to the well fluid convection
regime, at a given I,

The TEC feed current influences
significantly the optimized design.
But we can control it!

An optimal feed current I, ., Was
found.

Iteeqope Varies with h and ranges
between 2 and 3 A.
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R vs. well fluid convective coefficient, for different
TEC feed currents. Different symbols refer to the
different optimized design concepts.

® = Design 1, A = Design 2.
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HTS electronics temperature vs. well fluid convective

coefficient for four different systems, optimized for
Iteeqg = 2 A and h = 25, 50, 100 and 500 Wm-2K-1
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HTS electronics temperature, T, (°C)
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HTS electronics temperature vs. TEC feed current for four different systems, optimized for I, = 1, 2, 3 and 4 A, and
h = 25 Wm-2K-1 (left side) and 50 Wm-2K-1 (right side).
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HTS electronics temperature, T ;o (°C)
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Characteristic curve of the finally designed electronics unit. The plot reports the performance of the
cooling system as HTS electronics temperature vs. Convective coefficient and TEC feed current. The
minimum HTS electronics temperatures for each operating condition are highlighted with a red line.
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Topology Optimization Implementation
(SIMP method)

o 1

minimize: fobj (T; pdesign) = Apce fQPCB T dQpcp (3)
@ Optimization (opt)

constraints: 0 < pgesign <1 (4)
@ Optimization (opt) T'(T, pdesign) =0 (5)
density filter: —12V2p + P = Paesign (Lazarov 2011) (6)
fu Coefficient Form PDE (€)

. . . = tanh(Bn)+tanh(B(p;i—n

projection function: p; = tanh([)’n)+tanhgﬁgll—n); (Wang 2011) (7)

ﬁ Analytic 1 {fun)

interpolation function: ksimp = kins + (kay — kins) PP (8)

2= Wariahles
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Topology Optimization Implementation

projection function:

fixy , . =
&, Analytic1 (fun)
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interpolation function:
8= Variables

Simulation results

ksimp= Kins + (kAl - kins)p:p

vo2s
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Simulation results

interpolation function: koimp = Kins + (ka; — kins) PP (5)
8= Variables

Surface: HSPr{rho_filtered) &)

0.29

0.28
Vv 0.28
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Simulation results

interpolation function: koimp = Kins + (ka; — kins) PP
8= Variables

Surface: HSPr{rho_fitered) o
A06

0.15
¥ 0.15
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Simulation results

interpolation function: koimp = Kins + (ka; — kins) PP
8= Variables

Surface: HSPr{rho_filtered)
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Simulation results

interpolation function: koimp = Kins + (ka; — kins) PP
8= Variables

Surface: HSPrirho_filtered)

¥ 0.03
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Simulation results

interpolation function: koimp = Kins + (ka; — kins) PP (5)
8= Variables

Surface: HSPr{rho_filtered) )

0.1

v 2.32x10%
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Simulation results

interpolation function: koimp = Kins + (ka; — kins) PP (5)
8= Variables

Surface: HSPr{rho_filtered) &)
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Simulation results

interpolation function: koimp = Kins + (ka; — kins) PP (5)
8= Variables

Surface: HSPr{rho_filtered) &)
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Simulation results

I

interpolation function: koimp = Kins + (ka; — kins) PP (5)
8= Variables

Surface: HSPrirho filtered) )
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