

Simulation and Verification of bionic heat exchangers with COMSOL Multiphysics

A. Kremers, M. Pieper

http://m.tk.de/centaurus/servlet/Bild/34341

Bionic heat exchanger

- Analogy to blood vessel system
- Low pressure losses
- Low energy consumption
- Optimized for fluid transport

[1], [2]

- Production of 2 real heat exchangers
- Different cover plates for different experiments:
- Pressure loss: glass cover plate, tab water at room temp., pressure difference between inand outlet
- 2. Temperature difference and behaviour: aluminium cover plate, heated tab water, temperature difference between in- and outlet, thermographic camera
- 3. General flow behaviour: glass cover plate, special fluid to visualize flow behaviour, high definition camera

Simulations

- Same CAD model used for production of real heat exchangers and for simulations with COMSOL
- Flow velocities in laminar border zone
 → Assumption: laminar flow
- Two simulation series:
 - 1. Laminar flow, stationary (pressure loss & flow behaviour)
 - 2. Non-isothermal flow, time dependent (temperature difference & temperature behaviour)
- Data from experiments as input data for simulations

1. Pressure loss

Inlet velocity [m/s]	Differential pressure experiment [mbar]	xperiment simulation	
0.55	3.95	3.63	8,1
0.91	9,95	8.82	11,3
1.27	19.22	16.65	13,7

- Pressure difference was measured at different inlet velocities
- A simulation was done for every inlet velocity
- Average error between simulation and experimental results: 11%
- Higher inlet velocity → higher error
 Flow velocities more and more in turbulent flow zone
- Good results of comparison between simulation and experiment

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

2. General flow behaviour

- Very good results
- Good correspondence with respect to flow behavior
- COMSOL calculates swirls of same size and position

3. Temperature difference and behaviour

- Graphs do have similar trend, but are not congruent to each other
- Reasons:
 - Laminar flow model was used, but actually turbulent flow behaviour in some spots
 - Material data of aluminum of real heat exchangers was not exactly known
 - → Material data of COMSOL material library was used

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

3. Temperature difference and behaviour

- Left: COMSOL
- Right: Thermographic camera
- Nearly equal pictures at the same time
- Very good correspondence

FH AACHEN UNIVERSITY OF APPLIED SCIENCE

Conclusion:

- The comparison between simulations and experiments shows positive results
- The error between simulation and experiment results is dependent on the particular physical parameter
- Pressure loss: Average error: 11%
- General flow behaviour: COMSOL results are equal to experiment results
- Temperature difference and behaviour: Temperature differences show a similar trend, but are not congruent. The pictures of the thermographic camera are nearly equal to the simulation results

Sources:

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

- [1]: M. Pieper, P. Klein: A simple and accurate numerical network flow model for bionic micro heat exchanger
- [2]: M. Herrmann: "Bionische ansätze zur Entwicklung energieeffizienter Fluidsysteme für den Wärmetransport", PhD-Thesis, University of Karlsruhe, 2005

3D CAD structure

FH AACHEN
UNIVERSITY OF APPLIED SCIENCES

- Development of 3D-CAD model according to an optimized 2D model
- Channels become smaller after every branching
- Mirroring of structure for perfect symmetry
- Optimizing CAD model for simulation reasons
- Simulation with optimized CAD model runs fast and without any problems
- → Simplifying the CAD model can speed up your simulation

