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Convection 
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 The transfer of heat from one place to another by the 
movement of fluids.  

 

 Convection can be "forced" by movement of a fluid or  

    by natural buoyancy forces alone, when the fluid is heated 

    (natural convection). 

 

  A porous medium: a material consisting of a solid matrix with 
an interconnected void.  

 

 The study of natural convection in cavity partially-filled with 
porous media has importance in many fields of science, 
engineering, chemical engineering and industrial applications. 

 



Ground Water 
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the permeable vertically 

slender space. This causes 

heat transfer between the 

hot water and the colder 

surrounding rocks. 

Heated ground water due to hot intrusion may rise in a narrow 

fractured zone. As the heated water rises, it eventually encounters a 

cooler rock formation that sandwiches 



Partially-Filled Porous Medium 
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 Solidification of castings 

The biofilm growth 



Heat Transfer in Cavity  
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Beavers and Joseph (1967) investigated the simple situation of 

the boundary conditions between a porous media and a 

homogeneous fluid. 

Singh and Thorpe (1995) conducted a comparative study of 

different models for the investigation of natural convection in a 

confined fluid and overlying porous layer. 

Saeid and Mohamad (2005) studied numerically the natural 

convection in a porous cavity with spatial sidewall temperature 

variation using finite element method. 

Study the effect of spatial wall temperature  on free convection 

in a square cavity partially filled with porous media has not 

been undertaken yet. 



The  conservation equations for mass, momentum and energy 

equations for the porous layer: 
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Mathematical Formulation 
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The conservation equations for mass, momentum and energy 

equations for the homogenous fluid layer are: 
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The governing equations for the porous layer can be written as: 

The non-dimensional variables are: 
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The governing equations for the fluid layer can be written as: 
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The dimensionless boundary conditions of Eqs. (11)–(15) are: 
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At the interface by using the matching conditions: 



The local Nusselt number along the hot and the cold walls, which are 

defined, respectively, by: 
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Finally, the average Nusselt number can be defined based on 

the average heat transfer coefficient and is given by: 
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Numerical Method and Validation 

Galerkin finite element method (GFEM), the governing equations 

subject to the boundary conditions are solved numerically using the 

CFD software package COMSOL Multiphysics. 



Saeid and Mohamad (2005) Present study 

Validation 



Results 

  

The isotherm patterns are raised with high 

intensity and with irregular-shaped next to 

the left wall by the increase of the wave 

number, while near to the cold wall, the 

isotherm patterns occur with vertical lines. 



Heat Transfer Rate 

Increasing Rayleigh number leads to increase the average Nusselt 

number, due the fact that the fluid has higher thermal conductively 

than porous, the smaller porous thickness layer has stronger effect 

on the heat transfer rate which has higher average Nusselt number.  



Future Works 

 3D 

 Chaotic convection 

 Turbulence flow 

 Multiphase flow 
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