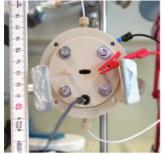
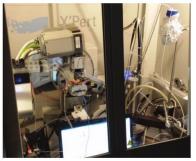


Simon Tschupp, S.E. Temmel, N. Poyatos Salguero, J. Herranz, T.J. Schmidt

Electrode Partitioning Model for the Koutecký-Levich Analysis of Electrochemical Flow Cells


Fuel vs. Flow Cells

Fuel Cells:

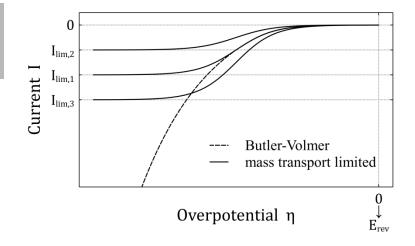

- Energy conversion device
- 2-electrode systems (bipolar setup)
- Mass transport: gas diffusion
- Complex system to study and model

Flow Cells:

- 3-electrode setup (assess half-cell reactions)
- Mass transport: gas dissolved in aqueous electrolyte, convection source
- Combination with other experimental techniques:
 - X-ray techniques (XAS, SAXS, WAXS)
 - Mass spectrometry (OLEMS)
 - Optical (FT-IR, UV-Vis)
- Unconventional sample properties

T. Binninger et al. *J. Electrochem. Soc.* **163** (2016) H906

J. Tillier et al., *J. Electrochem. Soc.* **163** (2016) H913



Y. Paratcha et al., *PSI Electrochemistry Laboratory - Annual Report* 2014 84

S.E. Temmel et al., Rev. Sci. Instrum. 87 (2016) 045115

Electrode Kinetics

Wall-jet electrodes:
$$\frac{1}{I_{tot}} = \frac{1.06}{I_{kin}} + \frac{1}{I_{lim}}$$

Channel electrodes:
$$\frac{1}{I_{tot}} = \frac{1}{I_{kin}} + \frac{0.93}{I_{lim}}$$

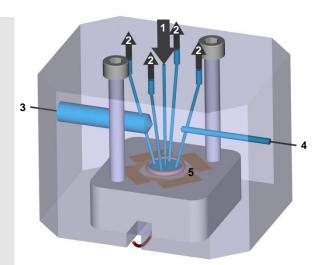
Polarization Experiments:

- ❖ Irreversible reduction: $A + e^- \rightarrow A^-$
- * Cathodic current is described by Butler-Volmer equation: $(-\alpha \cdot F)$

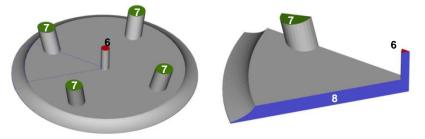
$$I = I_0 \exp\left(\frac{-\alpha \cdot F}{R \cdot T} \eta\right)$$

- Concentration of A at the electrode limited by mass transport
- Steady-state obtained by application of controlled convection source
- Separation of mass transport and electrode kinetics needed:
 - Koutecký-Levich equation for the rotating disk electrode (RDE)
 - Approximations for wall-jet and channel electrodes

Cell Design, Geometry and Boundary Conditions


Cell Design:

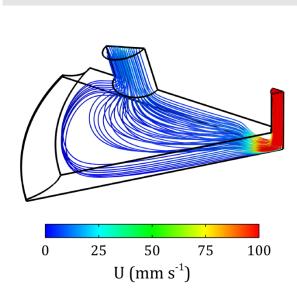
- Designed for thin-film samples deposited on insulating substrates
- Electrical contact from top of electrode
- Wetted area defined by O-ring sandwiched between sample and fluidic part
- Reference- and counter electrode situated downstream of reaction chamber to avoid contamination

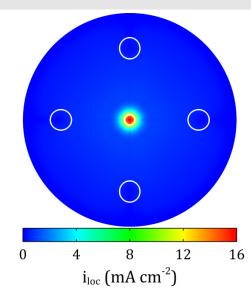

Physics and Boundary Conditions:

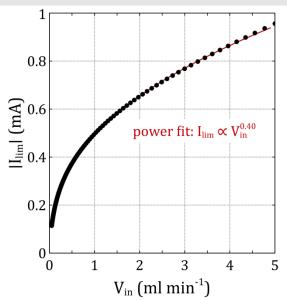
- Laminar single phase flow (Navier-Stokes)
- Transport of diluted species (Nernst-Planck)
- Equation based species flux (Butler-Volmer):

$$N = -\frac{I_0}{n \cdot F} \cdot \frac{c}{c_0} \cdot \exp\left(\frac{\alpha \cdot F}{R \cdot T}\eta\right)$$

- (1) inlet
- (2) outlets
- (3) reference electrode
- (4) counter electrode
- (5) working electrode
- (6) inflow boundary
- (7) outflow boundary
- (8) symmetry boundary

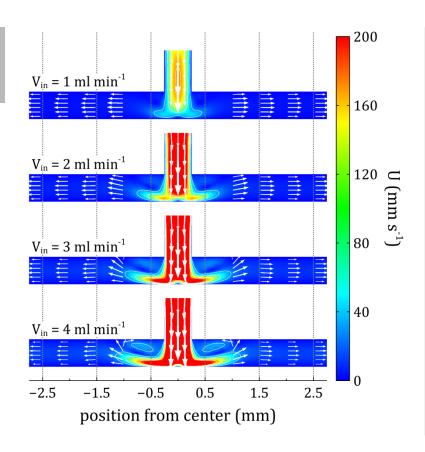





Flow Profile and Mass Transport

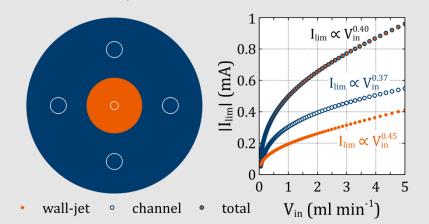
- Velocity Distribution:
 - ❖ Inlet flow rate V_{in} = 2 ml min⁻¹
- Local Current Density:
 - $V_{in} = 2 \text{ ml min}^{-1}$
 - * Overpotential η = 1 V
 - (→ mass transport limited)

- I_{lim} vs. V_{in} Correlation:
 - Exponent of power fit: 0.40
 - ❖ Ideal channel flow: 0.33
 - Ideal wall-jet flow: 0.75



Page 5

Electrode Partitioning: Motivation and Principle



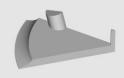
Velocity Distribution in Centre Slice:

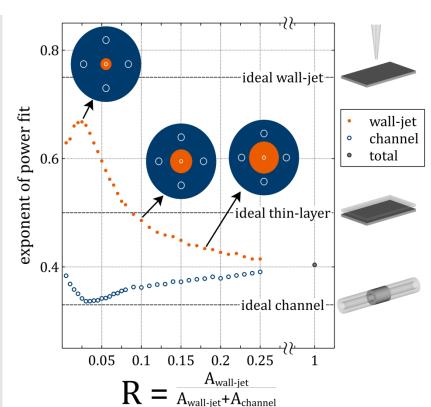
- Flow velocity profile composed of elements of wall-jet profile and channel profiles
- Ratio of wall-jet to channel depends on V_{in}

• Electrode Partitioning:

Virtual separation of electrode surface

Electrode Partitioning: Results


• Electrode Partitioning:


- Power fit exponent for wall-jet and channel parts plotted as function of ratio
- Reasonable match between channel and walljet parts with their idealized flow profiles
- Superposition of two ideal flow profiles in first approximation
- Corresponding Koutecký-Levich eq.:

$$\frac{1}{I_{tot}} = \frac{1.06}{I_{kin}} + \frac{1}{I_{lim}}$$

$$\frac{1}{I_{tot}} = \frac{1}{I_{kin}} + \frac{0.93}{I_{lim}}$$

$$\frac{1}{I_{tot}} = \frac{1 + 0.06 \cdot R}{I_{kin}} + \frac{0.93 + 0.07 \cdot R}{I_{lim}}$$

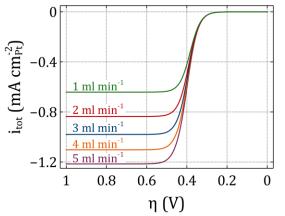
Verification: Polarization Curves and Tafel plots

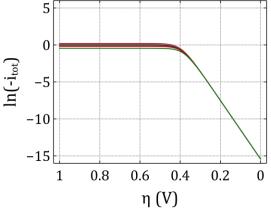
Polarization Curves:

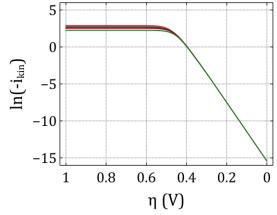
- Oxygen reduction reaction on polycrystalline Platinum
- Electrode kinetics:

$$i = i_0 \cdot \exp\left(\frac{-\alpha \cdot F}{R \cdot T}\eta\right)$$
$$i_0 = 2 \cdot 10^{-6} \text{ A m}_{\text{Pt}}^2 \qquad b_{\text{Tafel}} = 39.6 \text{ V}^{-1}$$

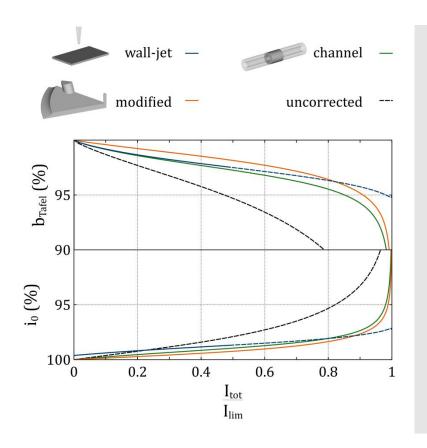
Tafel Plot for i_{tot}:


Linearized Butler-Volmer eq.


$$\ln(i_x) = \frac{-\alpha \cdot F}{R \cdot T} \eta + \ln(i_0)$$


* i_{tot} contains mass transport currents \rightarrow error upon determination of i_0 and b_{Tafel}

- Apply Koutecký-Levich eq. to subtract mass transport currents
- i_{kin} is free from mass transport losses and yields more accurate kinetic information



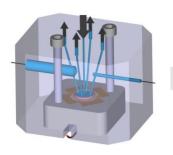
Verification: Precision across Fitting Range

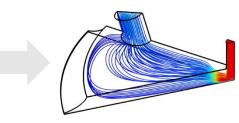
Comparison with Input Values:

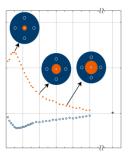
- Tafel slope b_{Tafel} and exchange current density i₀
 are known for the model data
- Assess precision of mass transport correction for different fitting regimes for the Butler-Volmer equation
- Notable improvement in comparison with uncorrected current densities (i_{tot})
- Comparison with equations for ideal wall-jet and channel flow profiles:
 - Improvement over channel electrodes
 - Koutecký-Levich equation for wall-jet electrodes needs further investigation

Summary and Conclusions

Model:

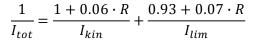

- Model can be set up with the base COMSOL Multiphysics[®] module
- Equation-based electrode reaction

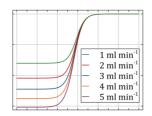

Method:


- Partition flow profile virtually in two parts and correlate with ideal (= well established) cases
- Obtain Koutecký-Levich equation based on above correlation

Verification:

- Compute polarization curves and apply equation to subtract mass transport currents
- Comparison of precision across the whole fitting range






$$\frac{1}{I_{tot}} = \frac{1.06}{I_{kin}} + \frac{1}{I_{lim}}$$

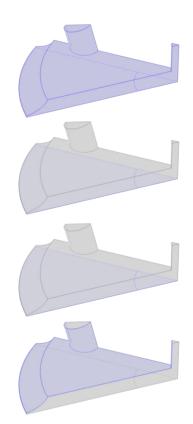
$$\frac{1}{I_{tot}} = \frac{1}{I_{kin}} + \frac{0.93}{I_{lim}}$$

Acknowledgements

- the Electrochemistry Laboratory (ECL)
- the Laboratory for Micro and Nanotechnology (LMN)
- PSI Research Commission for Funding

Simon Tschupp, S.E. Temmel, N. Poyatos Salguero, J. Herranz, T.J. Schmidt

Electrode Partitioning Model for the Koutecký-Levich Analysis of Electrochemical Flow Cells



Input Values and Meshing Sequence

Table I. Input Parameters for 5% H ₂ SO ₄		
Parameter	Symbol	Value (ORR)
Temperature	T	293 K
Electrolyte density	ρ	1032 kg m ⁻³
Dynamic viscosity	μ	1.112·10⁻³ Pa s
Inlet concentration	c_{in}	1 mol m ⁻³
Diffusion coefficient	D	2.01·10 ⁻⁹ m ² s ⁻¹
Exchange current density	i_o	$2 \cdot 10^{-6} \mathrm{A} \mathrm{m_{Pt}}^2$
Transfer coefficient	α	1
Transferred electrons	n	4
Overpotential for \boldsymbol{I}_{lim}	η	1 V

D.R. Lide, ed., CRC Handbook Chem. Phys., Internet Version 2016, CRC Press

K.C. Neyerlin et al. J. Electrochem. Soc. 153 (2006) A1955

Free Tetrahedral

- ❖ Max element size = 2·M
- ❖ Min element size = 0.2⋅M
- Corner refinement

Free Triangular

- Max element size = M
- ♦ Min element size = 0.1·M

Fine Boundary Layers

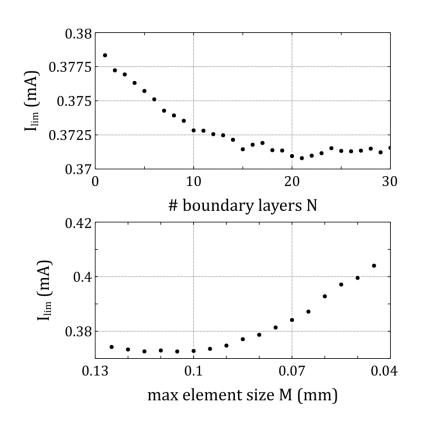
- Number of layers = N
- Stretching factor = 1.25
- Thickness = M / 1.25^(N-1)

Coarse Boundary Layers

- Number of layers = 2
- Stretching factor 1.25
- Automatic adjustment

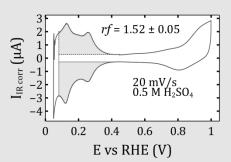
Mesh Refinement Study

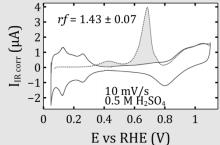
Number of boundary layers N:


- ♦ M = 0.1 mm
- Increasing number of boundary layers = finer boundary layer at the surface
- Size of outermost boundary layer determined by mesh element size of tetrahedral mesh
- More boundary layers = more accurate model
- Current decreases with increasing N
- No significant improvement after N = 15

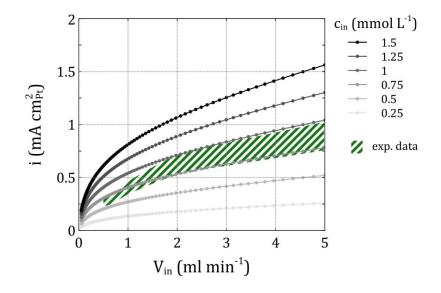
Maximum element size M:

- ⋄ N = 10
- M determines lateral resolution on electrode, size of tetrahedral mesh elsewhere and thickness of boundary layers
- Smaller M = more accurate model
- Current increases with decreasing M


But:


Differences in I_{lim} for different M and N are not significant upon comparison with experimental data!

Comparison to Experimental Results


- Hold potential while recording current I = f(t)
- Run slow (= approach steady-state) linear ramp on pump driving the electrolyte
- Correct experimental current for surface roughness determined by H_{upd} and CO monolayer oxidation:

Results (Hydrogen Oxidation Reaction)

Comparison of V_{in} vs I_{lim} curves computed for different inlet concentrations of H₂:

