COMSOL CONFERENCE 2016 MUNICH

Mattia Ortino TE-VSC-BVO

Simulation of Non-Evaporable Getter saturation with COMSOL®

<u>Outline</u>

- 1. Vacuum systems @ CERN;
- 2. NEG pumps and saturation mechanism;
- 3. Free molecular flow: COMSOL simulations;
- 4. Results and experimental benchmark;
- 5. Summary.

CERN Accelerator Complex

▶ p (proton) ▶ ion ▶ neutrons ▶ \bar{p} (antiproton) $\rightarrow + \rightarrow$ proton/antiproton conversion ▶ neutrinos ▶ electron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

Vacuum, Surfaces & Coatings Group Surfaces Technology Department

Mattia Ortino TE-VSC-BVO

...and some numbers

Machine	Туре	Year	Energy	Bakeout	Pressure (Pa)	Length	Particles	
Linac, Booster, ISOLDE, PS, n-TOF and AD Complex 2.6 km !								
LINAC 2	linac	1978	50 MeV	lon pumps	10 ⁻⁷	40 m	р	
ISOLDE	electrostatic	1992	60 keV	-	10 ⁻⁴	150 m	ions: 700 isotopes	
REX-ISOLDE	linac	2001	3 Me∨/u	partly	10 ⁻⁵ - 10 ⁻¹⁰	20 m	and 70 (92) elements	
LINAC 3	linac	1994	4.2 MeV/u	lon pumps	10 ⁻⁷	30 m	ions	
LEIR	accumulator	1982/2005	72 MeV/u	complete	10 ⁻¹⁰	78 m	pbar, ions	
PSB	synchrotron	1972	1-1.4 GeV	lon pumps	10 ⁻⁷	157 m	P, ions	
PS	synchrotron	1959	28 GeV	lon pumps	10 ⁻⁷	628 m	P, ions	
AD	decelerator	?	100 MeV	complete	10 ⁻⁸	188 m	pbar	
CTF3 complex	linac/ring	2004-09		partly	10 ⁻⁸	300 m	е	
PS to SPS TL	Transfer line	1976	26 GeV	-	10 ⁻⁶	~1.3 km	P, ions	Ba
SPS Complex	•				1	15.7 km !	1	
SPS	synchrotron	1976		Extractions	10 ⁻⁷	7 km	p, ions	
SPS North Area	Transfer line	1976		v	10 ⁻⁶ - 10 ⁻⁷	~1.2 km		
SPS West Area	Transfer line	1976	450 GeV			~ 1.4 km		n pi
SPS to LHC TI2/8 Line	Transfer line	2004/2006		-		2 x 2.7 km		
CNGS Proton Line	Transfer line	2005				~730 m		S
LHC Accelerator						~103 Km !		5
LHC Arcs (Beam x2, Magnets & QRL insul.)				-		2 x (2 x 25 km)		
LSS RT separated beams	collider	2007	2 × 7 TeV	complete	< 10 ⁻⁸	2 × 3.2 km	p, ions	
LSS RT recombination						~ 570 m		
Experimental areas						~ 180 m		
Beam Dump Lines TD62/68	Transfer line	2006	7 TeV	-	10 ⁻⁶	2 × 720 m		
				High Vacuum		~20 km		
				UHV	w/wo NEG	~ 57.5 km	~128 km !	
				Insulat	ion vacuum	~ 50 km		

Based on NEG pumping system

COMSOL

2016 MUNICH

NEG Alloy: Pumping Mechanism

COMSOL

2016 MUNICH

NFERENCE

Sticking coefficient evaluation by transmission method

First simulations in COMSOL are used to calculate the transmission trends

Then, using the TR carried out experimentally, is possible to extract the sticking coefficient for each gas injected.

CO has the highest SF:

Highest transmission ratios mean lowest P_2 .

Why COMSOL?

The only one 3D software for 3D saturation mechanisms

COMSOL: Use of functions as boundary conditions \rightarrow Sticking Factor f(n_{ads})

Wall type:

SG

Adsorption/Desorption

Adsorption/Desorption

Sticking coefficient

0

D	eso	rnt	ion	rat	e

D _G	0	mol/(m ² ·s)
Initial ads	orbant concentration	
n _{ads,0,G}	4.5e-6	mol/m ²
Addition	al molar flux	
Γ _G	User defined	•

1

1) <u>Mapped mesh</u> with $1cm^2$ square elements for the NEG surface, less refined on the remaining parts

2) <u>Wall type definition</u>

4) Adsorption wall type for the NEG surface

Simulated saturation process: Pressure evolution

Simulated saturation process: Adsorbed molecules

CERN

Mattia Ortino TE-VSC-BVO

Experimental bench mark

COMSOL

2016 MUNICH

CONFERENCE

Summary

- 3D dynamic saturation of a NEG coated chamber has been simulated with COMSOL. No other software available for 3D dynamic molecular flow simulation with variable sticking factors and absorption.
- The simulation agrees with the experimental data.
- Simulations can estimate the amount of gas to be injected before saturation.
- Potential uses of COMSOL:
 - Pressure evolution with NEG saturation in complex 3D geometries.
 - Reverse problem → Known transmission ratio calculate sticking factor through optimization in complex 3D geometries.

Thanks for your attention!

