







# A Novel Physics Interface Node for Nakamura Crystallization Kinetics.



Arthur Levy, arthur.levy@univ-nantes.fr Laboratoire de Thermocinétique de Nantes Université de Nantes

## Crystallization phenomenon

#### Metallurgy



#### Energy storage





Phase change materials

#### Phase change flow



#### Polymers



# Semi-crystalline polymers





spherulites



α, degree of crystallization (in [0, 1])

## Motivation





Develop a new physics in COMSOL

### **Outline**

Nakamura crystallization modelling

Implementation using the physics builder

Application

# Nakamura Crystallization modelling

# **Crystallization kinetics**

To be solved at each location

Nakamura law:

$$\frac{d\alpha}{dt} = nK_n(T)G(\alpha)$$

Nakamura exponent (n=3)

Kinetic function



Nakamura function

$$(1-\alpha)(-\ln(1-\alpha))^{1-\frac{1}{n}}$$

### Modification for robustness

$$\frac{d\alpha}{dt} = nK_n(T)G(\alpha)$$



# Implementation using COMSOL physics builder

# Domain and dependent variables

0, 1, 2 or 3D

#### Dependent variable:

Scalar  $\alpha$ , degree of crystallization (in [0, 1])



# **Material properties**

$$\frac{d\alpha}{dt} = nK_n(T)G(\alpha)$$

| Avrami index               | n        | [1]   |
|----------------------------|----------|-------|
| Nakamura kinetics function | $K_n(T)$ | [1/s] |

| Nakamura Kinetics (mat.Knak)         | Property type:       | Locally defined material property  |
|--------------------------------------|----------------------|------------------------------------|
| Avrami index (mat.n_avrami)          | Property name:       | Knak                               |
| ▶ ∆∪ Equation Display ODE (eqd1)     |                      |                                    |
| ▶ ∆∪ Equation Display G(a) (eqd1)    | Material model:      | Crystallization Kinetics           |
| ► A alpha_min (par.alpha_min)        |                      |                                    |
| ► Aralpha_min 1 (par.alpha_max)      | Material property:   | Nakamura kinetic function (vs T)   |
| ▶-CV Coefficient Form Equation 1 (co | iviaterial property. | Transmissa ismotio famotion (vo 1) |



| $\alpha_{min}$ | 1e-6   | [1] |
|----------------|--------|-----|
| $\alpha_{max}$ | 1-1e-6 | [1] |





## Coefficient form PDE

$$\frac{d\alpha}{dt} = nK_n (T) G (\alpha)$$
RHS



### **Exotherm automation**





# Application

# Modelling





$$T_{\text{ext}} = 230 \,^{\circ}\text{C}$$

$$h = 20 \, \text{W/m}^2/\text{K}$$

$$K, !, C_p$$

$$n, K_n$$

$$T_{\text{ext}} = 230 \,^{\circ}\text{C}$$

$$h = 20 \, \text{W/m}^2/\text{K}$$

0° Carbon fibre / thermoplastic composite

[Levy et al. 16, Tardif et al. 09, Thomas et al. 10]

#### Initial conditions

- Hot  $(T = 300^{\circ}C)$ 
  - Molten ( $\alpha = 0$ )

# Implementation in a COMSOL model

#### Classical implementation

#### Two physics



#### Exotherm as heat source



#### Material

#### Kinetics law



#### Thermo-crysto dependency



## Results



# Ongoing work and difficulties

#### Sharp transition (mushy) zone



#### Convection

$$\frac{\partial \alpha}{\partial t} + \nabla \alpha \cdot v = nK_n \left( T \right) G \left( \alpha \right)$$
Stabilization (SUPG)

# Conclusions

### Conclusions

A novel physics interface node, dedicated to Nakamura crystallization, has been implemented using the physics builder

A model of **cooling** and **solidification** in **polymer forming** processes uses this new node.









# A Novel Physics Interface Node for Nakamura Crystallization Kinetics.



arthur.levy@univ-nantes.fr

Laboratoire de Thermocinétique de Nantes Université de Nantes

# Automatic remeshing preliminary results

