Development of a Package for a Triaxial High-G Accelerometer Optimized for High Signal Fidelity

Ralph Langkemper

Robert Külls, Jürgen Wilde, Siegfried Nau, Sebastian Schopferer

COMSOL Conference

13.10.2016

Munich

COMSOL CONFERENCE 2016 MUNICH

AGENDA

- What is "high-g"
- Goal and Requirements
- Numeric Simulation
 - Package Design
 - Simulation Methods
 - Results
- Experimental Tests
 - Realised Prototype
 - Eigenfrequency
 - Triaxial Measurement
- Summary

What is "high-g"

- Examples for acceleration:
 - Gravity 9,81m/s² ≙ 1 g
 - Limit for roller coaster 6 g
 - Breaking point of humans 10 g
 - Crashtests 50-100 g
 - Testing sensors and electronics 1.000 g

- Special application "high-g":
 - Material characterization 100.000 g
 - Ballistic experiments 100.000 g

Goal and Requirements

- Starting point of this work:
 - Piezoresistive sensor chip
 - 3D-setup on Al₂O₃-ceramic plate
 - \rightarrow Sensor element
 - Uniqueness:
 - standing sensor chip for Z-axis
 - 90° contacting via Aerosol-print-jet

Goal and Requirements

Development of a Package for a Triaxial High-G Accelerometer

Wired

- Shock-proof (up to 100.000 g)
- Electromagnetic shielding
- Functional for -40 80° C
- High bandwidth (aim: 100 kHz)
 - Max. 5%-deviation
- Characterization of first prototype
 - \rightarrow Functional, robust and feasible sensor

Numeric Simulation Package Design

Numeric Simulation Simulation Methods

- Modal analysis:
 - Shape and frequency of the Eigen modes of the sensor
- Frequency spectrum analysis:
 - Excitation frequency varied
 - Computing of the electrical output signal of the sensor at
 - 100.000 g
 - 1 V supply voltage
- Use of COMSOL Multiphysics
 - Structural Mechanics
 - LiveLink for Inventor

- Used package parameters:
 - Material: Titanium (E/p = 26,4)
 - Wall thickness: 1 mm
 - Cap thickness: 0,2 mm

- Adhesive: epoxy (Young's modulus: 2,5 GPa)
- Adhesive layer sensor element:
 50 µm
- Adhesive layer sensor: 20 µm

- First mode: 39 kHz
 - Oscillation of the cap
 - Only little influence on the sensor signal

- Package mode: 128 kHz
 - First mode with noticable movement within the package
 - Quite high influence on the sensor element

- Sensor element mode: 287 kHz
 - Mode with main displacement within the sensor element
 - Expected to be main influence on the sensor signal
 - Frequency was not simulated

Experimental Tests Realised Prototype

- Prototype parameters:
 - Wall thickness: 1,5 mm
 - Cap thickness: 0,2 mm
 - Material: Titanium
 - Adhesive layers
 - Thickness: 20-70 µm
 - Young's modulus: 0,56 GPa

Adapted simulation:

Layer thickness	5%-limit	Package mode	Sensor element mode
20 µm	30 kHz	98 kHz	200 kHz
70 µm	16 kHz	67 kHz	129 kHz

Experimental Tests Eigenfrequency

- Excitation of sensor via a transient impulse
 - FFT of the signal

→ Frequency spectrum of the signal

Relevant Eigen frequencies

→ Peak within the spectrum

Experimental Tests Eigenfrequency

- Eigen frequency of the sensor chip:
 - Expected: 1 MHz
 - Measurement: 930 kHz
- Influence of the package:
 - Expected among 129-200kHz
 - Measurement: 153 kHz

→ Measured values coincide with the results of the numeric simulation

Experimental Tests Eigenfrequency

- Eigen frequency of the sensor chip:
 - Expected: 1 MHz
 - Measurement: 930 kHz
- Influence of the package:
 - Expected among 129-200kHz
 - Measurement: 153 kHz

→ Measured values coincide with the results of the numeric simulation

Experimental Tests Triaxial Measurement

- Acceleration on all three axes
 - Uniaxial Shock divided to all axes equally due to attachment angle
 - Impulse: 8600 g each axis
 - Expected sensitivity:
 - 1,30 µV/V/g (± 30%)
- Measured sensitivity
 - X-axis: 1,00 µV/V/g
 - Y-axis: 1,33 µV/V/g
 - Z-axis: 1,30 µV/V/g
 - → Corresponds with the expected values of simulation and previous work

Summary

- A package was designed and modelled
- Its behaviour was examined via simulation
- A prototype was built and characterized
- The simulation could be verified with the experimental results

Thank you for your attention!

Contact:

Ralph Langkemper Fraunhofer Ernst-Mach-Institut Ralph.Langkemper@emi.fhg.de Tel: 07628/90 50 637

