Presented at the COMSOL Conference 2008 Hannover

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

Bielefeld University Department of Physics

Interactions of magnetic particles in a rotational magnetic field

D2 PHYSICS

Bielefeld University

Outline

2

Herth, A. Hütten

. Wittbracht, S.

.2008

1

06. 7

A. Weddemann, A. Auge,

- 1. Motivation
- 2. Governing equation
 - 1. Particle motion
 - 2. Technical realization ALE-approach
 - 1. Second domain triangulation
- 3. Interactions of beads in fluids
 - 1. Simple system
 - 2. Comparison between magnetic and hydrodynamic forces
- 4. Conclusions and Outlook

Motivation

3

Experimental observations

Magnetic micro- or nanoparticles can interact very strongly:

Under the influence of an external homogenous magnetic field particle create chains

Question: Can magnetic interactions be neglected when modeling particles in microfluidic systems?

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

Particle motion

Governing equations

Governing equations:

5

Particle motion:

$$M\frac{d}{dt}U(t) = F_{mag} + F_{visc} + F_{pen}$$

$$F_{mag} = \int_{particle} f \, dx = - \int_{particle} \operatorname{grad} \langle M, B \rangle \, dx$$

 F_{visc} \Box viscous force term

 F_{pen} \Box force term preventing particles from overlapping

 $U(t) = (v_x^{part_1}, v_y^{part_1}, v_x^{part_2}, \ldots)^T \square$ velocity vector

$$M\Box B_{ext} | M| = M_s$$

$$\int_{\Omega_t} \langle \operatorname{grad} \psi_{A_z}, \operatorname{grad} A_z \rangle dx - \mu_0 \int_{\Omega_t} \left(M_y \frac{\partial \psi_{A_z}}{\partial x} - M_x \frac{\partial \psi_{A_z}}{\partial y} \right) dx = 0$$

$$M \frac{d}{dt} U(t) = F_{mag} + F_{visc} + F_{pen}$$

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

Particle movement requires mesh displacement

 \rightarrow ALE-formalism

ALE-formulation

Governing equations

The basic idea of ALE-methods is to use different coordinate systems, a reference and a spatial system.

6

Calculation transformed to reference system Example:

$$\frac{\partial u}{\partial t}(\mathbf{x}, t) + \mathcal{L}[u](\mathbf{x}, t) = 0$$

$$\int_{\Omega_t} \Psi(x, t) \cdot \frac{\partial u}{\partial t}(x, t) dx + \int_{\Omega_t} \Psi(x, t) \cdot \mathcal{L}[u](x, t) dx = 0$$

 $- - - - \cdot \text{ domain transformation } - - - - \cdot$ $\int_{\Omega_0} \psi(\mathcal{A}(\boldsymbol{\xi}, t)) \cdot \frac{\partial u}{\partial t} (\mathcal{A}(\boldsymbol{\xi}, t), t) \cdot \det J_{\mathcal{A}_t}(\boldsymbol{\xi}, t) d\boldsymbol{\xi}$ $+ \int_{\Omega_0} \psi(\mathcal{A}(\boldsymbol{\xi}, t)) \cdot \mathcal{L}[u] (\mathcal{A}(\boldsymbol{\xi}, t), t) \cdot \det J_{\mathcal{A}_t}(\boldsymbol{\xi}, t) d\boldsymbol{\xi} = 0$

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

ALE-formulation

Governing equations

Limitations of ALE-methods:

- Topological changes:

7

particles moving towards each other

- Very strong displacements:

particle moving too far in one direction

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

ALE-formulation

8

Governing equations

Calculation of ALE-mesh-displacement:

$$V_{\text{mesh}} = V_{\text{part},1}\Lambda_{1}$$

$$V_{\text{mesh}} = \sum_{\text{nodes}} V_{\text{part},i} \Lambda_i$$

second FEM-triangulation with linear basis set Λ

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

Second domain triangulation

Governing equations

The parameter functions Λ can be calculated by standard FEMmethods:

with affine linear mapping

9

$$\Phi_{x_1x_2x_3}(s_1, s_2) = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + s_1 \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix} + s_2 \begin{pmatrix} x_3 - x_1 \\ y_3 - y_1 \end{pmatrix} \qquad \Lambda(x) = \Lambda(\Phi^{-1}_{x_1x_2x_3}(x)) = \frac{(x_3 - x)(y_3 - y_2) - (x_3 - x_2)(y_3 - y)}{(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)}$$
$$f(\Lambda, \theta_1, \theta_2) = \frac{\Lambda - \theta_1}{1 - (\theta_1 + \theta_2)} \cdot \Theta(\Lambda - \theta_1) \cdot \Theta(1 - \Lambda - \theta_2) + \Theta(\Lambda - (1 - \theta_2))$$

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

Particle motion

Governing equations

Governing equations:

10

 $M\Box B_{ext} | M| = M_s$ $\int_{\Omega_t} \langle \operatorname{grad} \psi_{A_z}, \operatorname{grad} A_z \rangle dx - \mu_0 \int_{\Omega_t} \left(M_y \frac{\partial \psi_{A_z}}{\partial x} - M_x \frac{\partial \psi_{A_z}}{\partial y} \right) dx = 0$ $M \frac{d}{dt} U(t) = F_{mag} + F_{visc} + F_{pen}$

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

Particles induce fluid flow:

$$\rho \frac{\partial u}{\partial t} + \rho(u\nabla)u = -\operatorname{grad} p + \eta \Delta u + \rho f$$

div $u = 0$

Total mesh displacement:

$$\Delta r = \sum_{i} (r_i - \xi_i) \cdot f(\Lambda_i(r), \theta_1, \theta_2)$$

Additional remeshing condition: $\min_{T \in T} qual T < \sigma$

Different phenomena:

- chain creation

 $f = f_0$

 $f = 1.5 f_0$

- particles oscillating against each other

Interactions of beads in fluids

Frequency dependence for different initial conditions:

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

12

Interactions of beads in fluids

Frequency dependence for different particle diameters:

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

13

Interactions of beads in fluids

Frequency dependence for different particle magnetizations:

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

14

15

Interactions of beads in fluids

Observation:

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

Comparison between forces

Model discussion

A. Weddemann, A. Auge, F. Wittbracht, S. Herth, A. Hütten

16

28.05.2008

Conclusion & Outlook

D2 PHYSICS

17

Bielefeld University

www.spinelectronics.de

Conclusion

- We have developed a model to describe the dynamic behaviour of magnetic beads
- We have simulated experimentally known effects (chain creation)
- We have shown that the magnetic interaction of particles can induce strong fluidic particle interactions that gain importance when dealing with different particle sizes

Outlook

- Finding proper clearcuts for different force regimes
- Implementing ferromagnetic particles