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Abstract: We present a novel method for 

concentrating and focusing small analytes by 

taking advantage of the nonuniform ion 

distributions produced by thick electric double 

layers (EDLs) in nanochannels with 

heterogeneous surface charge. Specifically, we 

apply a voltage bias to gate electrodes embedded 

within the channel walls, tuning the surface 

charge in a region of the channel and 

subsequently altering the ionic strength and 

charge density in that region relative to the rest 

of the channel. The resulting nonuniform 

electromigration fluxes in the different regions 

serve to stack charged sample ions near an 

interface where a step change in zeta potential 

occurs, providing enhancement ratios superior to 

those exhibited in traditional microchannel field 

amplified sample stacking (FASS). Numerical 

simulations are performed to demonstrate the 

phenomenon, and resulting velocity and salt 

concentration profiles show good agreement with 

analytical results. 
 

Keywords: nanofluidics, electrokinetic 
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1. Introduction 
 

Recent advances in micro- and nanoscale 

fabrication technologies have spurred the 

development of myriad novel devices for 

bioassays, DNA separation/amplification, and 

other lab-on-chip processes [1-6]. However, the 

small size scale of these devices introduces 

several obstacles that must be overcome through 

engineering prowess. A primary concern remains 

the necessity for sample analyte preconcentration 

in bioanalytical micro and nanofluidic devices 

[7,8]. Many innovative focusing techniques 

utilizing electrokinetic phenomena such as 

FASS, ion concentration polarization, 

isotachophoresis, isoelectric focusing, and 

concentration gradient focusing have been 

introduced in previous works to address and 

attempt to resolve this prevalent issue in on-chip 

applications [1-11]. Devices employing these 

mechanisms often exploit the competition 

between electroosmotic flow (EOF) and 

electrophoresis in micro- and nanofluidic 

systems in order to create regions of localized 

ion enrichment. These enriched ions can then be 

used for further downstream processing once the 

level of sample molecules reaches the threshold 

limit detectable by modern sensing capabilities. 

Traditional microfluidic FASS involves the 

injection of a low concentration sample plug 

solution into a channel in order to create a 

conductivity gradient between the plug and the 

bulk fluid. These conductivity gradients produce 

electric field gradients which drive sample ions 

to “stack” at an equilibrium position where the 

various forces balance. Bharadwaj and Santiago 

comprehensively summarized the driving forces 

behind the stacking mechanism in microchannels 

[8], while Sustarich et al presented new findings 

of increased sample enhancement in the 

nanoscale regime due to pressure gradient 

induced flow focusing and electrostatic repulsion 

from finite-sized electric double layers (EDLs) 

relative to the channel height [9].  

We extend these works by investigating the 

effects of thick, overlapped EDLs on the 

behavior of background electrolyte ions and 

sample ions in a nanochannel with nonuniform 

EOF. Other authors have previously investigated 

the effects of nonuniform EOF realized through 

means ranging from field effect control to EOF 

suppressing surface treatments [12-14]. Such 

channels have been shown to exhibit tremendous 

promise when it comes to controlling the 

behavior of bulk fluid and individual ions in 

applications such as nanofluidic diodes and field 

effect transistors [15-17].   

Further, we have found that it is theoretically 

possible to create regions of nonuniform 

conductivity and electric fields within a single 

buffer solution by simply tailoring the surface 

charge in select regions of a nanochannel. We 

have therefore designed a tunable nanofluidic 

preconcentration system with embedded gate 

electrodes, allowing for field effect control of 
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where �	 is the ion valence, �� is the elementary 

charge, ��� represents the thermal energy, and �	,� is the bulk concentration of cations and 

anions sufficiently far from the surface. The 

characteristic length scale over which the 

potential and ion distributions decay within the 

EDL is referred to as the Debye length, which 

for a symmetric, monovalent electrolyte can be 

expressed as 

 
 λ! 
 "���
���2����� . (3) 

   

For low concentration electrolytes (�� < 1 

mM) in nanochannels, this characteristic length 

can approach and even exceed the height of the 

channel. In such situations, it is no longer 

appropriate to assume that the ion concentrations 

far away from the channel walls (i.e. along the 

channel center) are the same as those in the bulk 

fluid within the reservoirs supplying the channel. 

The centerline concentration in the channel is 

instead determined by the potential Ψ' at the 

centerline, and the Boltzmann distribution 

modifies to 
 �	 
 �� exp �� ���	Ψ'��� � exp (� ���	�Ψ � Ψ'���� ). (4) 

   

Using the definition �� 
 ���� � ��� and 

assuming a 1D potential profile, we use the 

method presented by Baldessari to integrate 

Poisson’s equation and find a resulting potential 

profile in the different regions of the channel 

[18]. It should be noted here that for channels 

with modified zeta potentials in the middle 

region (see Figure 2), the “bulk” concentration �� of ions in this region will not necessarily be 

equal to the supplying inlet or outlet reservoir 

concentrations, and must be solved as an 

additional unknown using channel-to-well 

equilibrium via a species conservation equation. 

If the surface charge is known instead of the zeta 

potential in a given region of the channel, the 

two can be related through the potential gradient 

at the wall through the relation 
 

 *+ 
 ����
 ,-Ψ-./01�. (5) 

   

2.2 Velocity and Electric Fields 

The inherently low Reynolds number 

associated with flows in nanofluidic devices 

allows us to use the incompressible forms of the 

Stokes equation and the continuity equation to 

describe the conservation of momentum within a 

nanochannel for a fluid experiencing an electric 

body force, 

 
 0 
 3∇�5 � �6 + ��8; 										� ∙ 5 
 0, (6) 

   

where 6 is the pressure within the fluid, 3 is the 

dynamic viscosity of the fluid, 5 is the velocity 

field, and 8 is the externally applied electric 

field. Substituting the charge density from 

Poisson’s equation into the electric body force 

term in (6) and assuming a 1D fully developed 

flow, we obtain the following equation 

 
 0 
 3 ;�<;.� � ;6;= � ���
>? ;�Ψ;.� . (7) 

   

This equation can be directly integrated with a 

midplane symmetry condition and a no slip 

condition at the wall, resulting in the traditional 

1D EOF profile 
 

 <�.� 
 �123 -6-= �.� � @.� � �>?ζ3 (1 � Ψ�.�ζ ). (8) 

   

We use the 1D model of Sustarich et al to find 

the internal pressure gradients, electric fields, 

and resulting flow profiles in the various regions. 

This model applies continuity and a known 

pressure drop along the channel to solve for the 

internal pressure gradients in terms of the electric 

fields. The electric fields are then solved with the 

constraint that the area averaged electrolyte ion 

fluxes due to convection and electromigration 

must remain constant throughout the channel 
 

 <�AAA	 + B	�	̅> 
 �DEFG., (9) 
   

where B	 
 HIJKLIMNO  [7]. These equations are solved for 

the unknown electric fields and the unknown 

“bulk” concentration �� of ions in the modified 

region. The resulting potential and BGE ion 

profiles are then found from the method 

described in [18], and the velocity profiles are 

calculated from (8). 

 

3. 2D Numerical Model 
 

Commercial finite element simulation 

software such as COMSOL Multiphysics has 

been used extensively in previous works to 

numerically model electrokinetic flows in micro- 

and nanofluidics [1,4,7,10,19]. In this paper, we 
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Figure 

electrophoretic trapping of particles in a simulation, (c) steady state fluxes along the c

averaged time

gradient is visible in the positive electrophoretic flux of the negative sample in (d), the peaks near the t

locations in (c), 

 

validated through comparison with existing 

analytical techniques to solve the 1D Poisson

Boltzmann equation, Stokes equation, and 

Nernst

These results provide encouraging 

indications that it is possible to perform 

stationary field

preconcentration in nanochannels without using 
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