Adaptive Control of Simulated Moving Bed Plants Using Comsol's Simulink Interface

Speaker:

Marco Fütterer Institut für Automatisierungstechnik Otto-von-Guericke Universität Universitätsplatz 2, D-39106 Magdeburg Germany

e-mail: marco.fuetterer@ovgu.de

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

Contents

Adaptive Control of Simulated Moving Bed Plants Using Comsol's Simulink Interface

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

Introduction

- Modeling of SMB plants
- Control of SMB plants
- Conclusions

How we can separate a mixture of two components?

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

One way is to make use of different adsorption affinities of components

Hannover 4.-6.Nov

Consider a simple pipe

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

which is filled up with adsorption materials

Now, a bucket with a mixture of two components dissolved in an eluent is pumped through this adsorption column.

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

Marco Fütterer, 6. Nov. 2008

The more retained component B takes more time to travel through the column as the less retained component A.

Modeling of SMB plants

Control of SMB plants

Conclusions

A+B

Therefore, chromatography provides a simple method to separate components.

Marco Fütterer, 6. Nov. 2008

Introduction to simulated moving bed

How one can achieve a continuous separation?

 $C_{A,Ex} C_{B,Ex}$

Ex

A + B

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

Several chromatographic columns are arranged in a circle, where the feedings and drains are shifted cyclically.

R

COMSOL CONFERENCE Hannover 4.-6.Nov. Portshifting

 $V_{Fe} \mathbf{i} C_{A,Fe} C_{B,Fe}$

 $C_{A,Ra} C_{B,Ra}$

Source: D.B. Broughton, G. Gerhold, US Patent, 2 985 589 (1961)

Introduction to simulated moving bed

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

Marco Fütterer, 6. Nov. 2008

Introduction to simulated moving bed

On Adaptive Control of Simulated Moving Bed Plants

Modeling

Modeling of a chromatographic column

G. Guiochon, B. Lin, Modeling for Preparative Chromatography, Academic Press, San Diego (2003)

(fast adsorption)

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

$$\frac{\partial c_A}{\partial t} + F \frac{\partial q_A(c_A, c_B)}{\partial t} = -v_l \frac{\partial c_A}{\partial z} + D \frac{\partial^2 c_A}{\partial z^2}, \quad F = \frac{1-\varepsilon}{\varepsilon}$$

$$\frac{\partial c_B}{\partial t} + F \frac{\partial q_B(c_A, c_B)}{\partial t} = -v_l \frac{\partial c_B}{\partial z} + D \frac{\partial^2 c_B}{\partial z^2}, \quad v_l = \frac{\dot{V}}{\varepsilon A}$$
left boundary:

$$c_{i,in}(t) = c_i(t,0) - \frac{D \varepsilon A}{\dot{V}} \frac{\partial c_i(t,z)}{\partial z} |_{z=0} \quad i = A, B$$

right boundary: initial: $\frac{\partial c_i(t,z)}{\partial z}\Big|_{z=L} = 0$ i = A, B $c_i(0,z) = c_{i,0}(z)$ i = A, B

adsorption behavior

$$q_i = q_i \left(c_A, c_B \right)_{i=A,B}$$

- c fluid concentration
- q adsorbed concentration
- \dot{V} volumetric flow rate
- *E* void fraction
- A cross section area
- D diffusion

Modeling

Comsol Implementation

Comsol® Multyphysics Users Guide, Comsol AB, Sweden, http://www.comsol.se (2005)

Comsol's pde equation in general form:

Introduction

Modeling of

SMB plants

Control of

SMB plants

 $\mathbf{d}_{\mathbf{a}} \cdot \frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot \mathbf{\Gamma} = \mathbf{F}$

boundary condition in general form:

$$\mathbf{u} = \begin{pmatrix} c_A & c_B \end{pmatrix}^T, \\ \mathbf{d}_{\mathbf{a}} = \begin{pmatrix} 1 + F \cdot \frac{\partial q_A}{\partial c_A} & F \cdot \frac{\partial q_A}{\partial c_B} \\ F \cdot \frac{\partial q_B}{\partial c_A} & 1 + F \cdot \frac{\partial q_B}{\partial c_B} \end{pmatrix}, \\ \mathbf{\Gamma} = \begin{pmatrix} \frac{\dot{V}}{\varepsilon \cdot A} \cdot c_A - D \cdot \frac{\partial c_A}{\partial z} & \frac{\dot{V}}{\varepsilon \cdot A} \cdot c_B - D \cdot \frac{\partial c_B}{\partial z} \end{pmatrix}^T, \\ \mathbf{F} = \begin{pmatrix} 0 & 0 \end{pmatrix}^T.$$

$$-\mathbf{n} \cdot \mathbf{\Gamma} = \mathbf{G} + \left(\frac{\partial \mathbf{R}}{\partial \mathbf{u}}\right)^{T} \cdot \mathbf{\mu}, \qquad \mathbf{G}_{|z=0} = \left(\frac{V}{\varepsilon \cdot A} \cdot c_{A,in} \quad \frac{V}{\varepsilon \cdot A} \cdot c_{B,in}\right)^{T}, \\ \mathbf{R} = \mathbf{0} \qquad \mathbf{G}_{|z=L} = \left(-\frac{V}{\varepsilon \cdot A} \cdot c_{A} \quad -\frac{V}{\varepsilon \cdot A} \cdot c_{B}\right)^{T}, \\ \mathbf{R}_{|z=L} = \left(-\frac{V}{\varepsilon \cdot A} \cdot c_{A} \quad -\frac{V}{\varepsilon \cdot A} \cdot c_{B}\right)^{T}, \\ \mathbf{R}_{|z=L} = \left(0 \quad 0\right)^{T}.$$

Marco Fütterer, 6. Nov. 2008 M. Fütterer, *Proc. of the European COMSOL Conf. 2007* http://www.comsol.se/academic/papers/3309 On Adaptive Control of Simulated Moving Bed Plants

. T

Modeling

Coupling of columns

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

COMSOL

External flow- rates: $0 = \dot{V}_{El} + \dot{V}_{Fe} - \dot{V}_{Ex} - \dot{V}_{Ra}$ $\dot{V}_{Fe} C_{A,Fe} c_{B,Fe}$ Eluent feed: $\dot{V}_{I} = \dot{V}_{IV} + \dot{V}_{El}$ $c_{i,in,I} \cdot \dot{V}_{I} = c_{i,out,IV} \cdot \dot{V}_{IV}$ i = A, BExtract- drain: $\dot{V}_{II} = \dot{V}_{I} - \dot{V}_{Ex}$ $c_{i,in,II} = c_{i,out,I} = c_{i,Ex}$ i = A, BFeed: $\dot{V}_{III} = \dot{V}_{II} + \dot{V}_{Fe}$ $c_{i,in,III} = c_{i,out,II} \cdot \dot{V}_{II} + c_{i,Fe} \cdot \dot{V}_{Fe}$ Raffinate- drain: $\dot{V}_{IV} = \dot{V}_{III} - \dot{V}_{Ra}$ $c_{i,Ra} = c_{i,in,IV} = c_{i,out,III}$ i = A, B

CAEx CRE

Portshifting

Determining Operating points

$$\begin{split} \begin{array}{c} \begin{array}{c} \dot{V}_{I}, \dot{V}_{Ex}, \dot{V}_{Fe}, \dot{V}_{Ra}, T_{S} \\ \hline \\ Given: c_{A,Fe} c_{B,Fe} \dot{V}_{Fe} 0 \ll \tau_{B,I} \leq 1 \quad 0 \ll \tau_{A,B'} \leq 1 \\ c_{\theta,\theta} = \frac{1}{K_{B}} \cdot \frac{H_{B} - H_{A}}{\sqrt{H_{A} \cdot H_{B} + H_{A}}} \quad c_{B,Fe} > c_{B,0} \\ \hline \\ \hline \\ \end{array} \\ \begin{array}{c} c_{\theta,\theta} = \frac{1}{K_{B}} \cdot \frac{H_{B} - H_{A}}{\sqrt{H_{A} \cdot H_{B} + H_{A}}} \quad c_{B,Fe} > c_{B,0} \\ \hline \\ \hline \\ \varepsilon_{e,e} - \frac{H_{e} - H_{A}}{\sqrt{H_{a} \cdot H_{B} + H_{A}}} \quad c_{B,Fe} > c_{B,0} \\ \hline \\ \hline \\ \varepsilon_{e,e} - \frac{H_{e} - H_{A}}{\sqrt{H_{a} \cdot H_{B} + H_{A}}} \quad c_{B,Fe} > c_{B,0} \\ \hline \\ \hline \\ \varepsilon_{e,e} - \frac{H_{e} - H_{A}}{\sqrt{(H_{e} - H_{A})^{2} (H_{e} - H_{A})^{2} (H_{e} - H_{A})^{2} (H_{e} - H_{A})(H_{e} - H_{A})(H_{e} - H_{A}))} \\ \hline \\ \end{array} \\ \begin{array}{c} c_{\mu,e} - \frac{H_{e} - H_{A}}{H_{A} \sqrt{(H_{e} - H_{A})^{2} (H_{e} - H_{A} \cdot (1 - \tau_{B,I})) + \tau_{B,I}}}{K_{e} (H_{e} - H_{A})^{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} c_{\mu,e} - \frac{H_{e} - H_{A}}{H_{e} \sqrt{(H_{B} + \sqrt{H_{A}})^{2} (H_{e} - H_{A} \cdot (1 - \tau_{B,I})) + \tau_{B,I}}}{F \cdot \tau_{B,I} (H_{B} - H_{A})^{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} c_{\mu,e} - \frac{H_{e} - H_{A}}{H_{e} \sqrt{(H_{B} - H_{A})^{2}}} \\ \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} c_{\mu,e} - \frac{C_{A,B'}}{H_{e} \sqrt{(H_{B} - H_{A})^{2}}} \\ \hline \\ \end{array} \\ \begin{array}{c} c_{\mu,e} - \frac{H_{e} - H_{A} \cdot C_{A,B'}}{(H_{e} - H_{A})^{2}} \\ \hline \\ \end{array} \\ \end{array} \\ \begin{array}{c} c_{\mu,e} - \frac{H_{e} - H_{e} - H_{e} - H_{e} \cdot H_{e} - H_{e} -$$

Marco Fütterer, 6. Nov. 2008 M. Fütterer, Chem. Eng. Tech., 2009, 32 http://dx.doi.org/10.1002/ceat.200800397

Introductio

Modeling

Control of

SMB plan

COMSOL CONFERENCE Hannover 4.-6.Nov.

On Adaptive Control of Simulated Moving Bed Plants

Control of SMB Plants

Why control?

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

1. robust operation in presence of disturbances

2. minimize running costs

e.g. reducing eluent consumption

Control of SMB Plants for complete separation

Modeling of SMB plants

Control of SMB plants

Conclusions

- columns of one zone
- keep all controls fixed during one switching time
- model only the foot point movement.

Marco Fütterer, 6. Nov. 2008 M. Fütterer, *Chem. Eng. Tech.*, **2008**, *31 (10)*, 1438. http://dx.doi.org/10.1002/ceat.200800277

Control of SMB Plants for complete separation

Rename the variables to make it nice for control peoples.

model equations:

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

$$u_{i}(k) = \dot{V}_{i}(k) \quad i = 1, 2, 3, 4 \quad u_{5}(k) = T_{S}(k) \quad v_{i}(k) = \frac{L}{\theta_{i}} \cdot \dot{V}_{i}(k) \quad \theta_{i} = \hat{u}_{i}^{*} = \dot{V}_{i}^{*} \cdot T_{S}^{*}$$

$$\hat{u}_{i}(k) = u_{i}(k)u_{5}(k) \quad y_{i}(k) = \tau_{i}(k-1) \qquad i = 1, 2, 3, 4$$

$$y_{i}(k+1) = \frac{\theta_{i} - \hat{u}_{i}(k-1)(1-y_{i}(k))}{\hat{u}_{i}(k)}$$

Use a P- controller with ideal open loop control:

$$\widehat{u}_{i}(k) = \widehat{\theta}_{i} - 0.25 \cdot \left(y_{i,ref} - y_{i}(k)\right) \cdot \widehat{\theta}_{i} \quad i = 1, 2, 3, 4$$

Use a parameter estimator for model parameters:

$$\hat{\theta}_{i}(k) = \hat{\theta}_{i}(k-1) + (1-a_{\theta}) \cdot \hat{u}_{i}(k-1) \cdot (y_{i}(k) - \hat{y}_{i}(k)) \quad |a_{\theta}| < 1 \quad i = 1, 2, 3, 4$$

Marco Fütterer, 6. Nov. 2008 M. Fütterer, *Chem. Eng. Tech.*, **2008**, *31 (10)*, 1438. http://dx.doi.org/10.1002/ceat.200800277

Control of SMB Plants for complete separation

Marco Fütterer, 6. Nov. 2008 M. Fütterer, *Proc. of the European COMSOL Conf. 2008* http://www.comsol.se/academic/papers

Control of SMB Plants for complete separation

Modeling of SMB plants

Control of SMB plants

COMSOL CONFERENCE Hannover 4.-6.Nov

Conclusions

Introduction

Modeling of SMB plants

Control of SMB plants

Conclusions

An adaptive control concept of SMB plants was successfully implemented and tested using Comsol[®] Multiphysics and Matlab[®] Simulink[®].

Comsol is a powerful tool to model complex dynamic systems described by partial differential equations.

Comsol's interface to Matlab Simulink provides control designers a simple way to design and test control loop's in familiar Simulink environment.

End of Presentation

- Details can be found at Comsol's conference CD.
 - The full simulation example will be made public for everyone.

Thank You

Modeling of SMB plants

Control of SMB plants

Conclusions

