European COMSOL

Conference, Hannover, Germany 04.-06.11.2008

Modeling Polybenzimidazole/Phosphoric Acid Membrane Behaviour in a HTPEM Fuel Cell

UNIVERSITÄT

C. Siegel*, G. Bandlamudi, A. Heinzel

*c.siegel@zbt-duisburg.de

ZBT-Duisburg GmbH Universität Duisburg-Essen Institut für Energie- und Umweltverfahrenstechnik

Introduction:

- University of Duisburg-Essen / ZBT-Duisburg GmbH
- High temperature PEM fuel cell (HTPEM)
- Review: 2D HTPEM model (European COMSOL Conference 2007)
- Objectives of this 3D study

Modeling efforts:

- Computational subdomains
- Governing equations
- Boundary conditions

Computational methodology:

- Meshing
- Solver settings and solution procedures

Results:

- Modeling base case operating conditions
- Experimental investigations
- Conclusion & outlook

University of Duisburg-Essen / ZBT-Duisburg GmbH

University Duisburg-Essen: Hydrogen and fuel cell R&D since 1996

ZBT-Duisburg GmbH established in 2001 TAZ established in 2008

Hydrogen and fuel cell related activities in 7 divisions

Focusing the HTPEM technology:

- Bipolar-plate development
- Cell and stack design and operation
- System integration
- Theoretical analyses (e.g., modeling and simulation)

High temperature PEM fuel cell (HTPEM)

Fuel Cell - Device which electrochemically converts energy stored in a fuel and oxidant into electricity (e.g. oxygen/hydrogen half - cell reactions)

Some benefits of using higher operating temperatures:

- Reformate gas (higher CO-tolerance)
- No humidification (simplified system design)
- Faster reaction kinetics
- Simplified heat management

Objectives:

- Development a complete large scale 3D HTPEM model (including structural details)
- Model 'validation' with experimental investigations

Challenges:

- Only few CFD/FEM models available in open literature (*e.g. Cheddie et al., Peng et al., Korsgaard et al.*)
- (Relatively) new technology (some transport processes not fully understood yet)
- Only few material parameters available

Review: 2D HTPEM (European COMSOL Conference 2007)*

*Siegel, C. et al., Proceedings of the European COMSOL Conference – Vol. 1, Numerical simulation of a high-temperature PEM (HTPEM) fuel cell, 428-434, Petit, J.-M., Squalli, O., Grenoble, France (2007)

Objectives of this 3D study

- Development of a 3D HTPEM model including gas channels and bipolar-plates
- Enhancement of the already developed and presented 2D study
- All conservation equations (mass, momentum, energy, species, charge) included
- PBI/H₃PO₄ sol-gel membrane conductivity modeled using an Arrhenius equation
- Most physical and material properties updated according the latest publications in the field and personal communications
- More realistic view of HTPEM operation behaviour

3D model \rightarrow extended to the third dimension (here *x*)

Dimensions: 0.002 [m] by 0.003 [m] by 0.01 [m] (*x*, *y*, *z*)

Mass / momentum balance (*u*,*P*):

- Gas channel \rightarrow Navier-Stokes
- Porous media \rightarrow Brinkmann

Mass / species balance (ω_i):

Gas channel and porous media
 → Stefan-Maxwell convection
 and diffusion

Charge balance (φ_i) :

 Bipolar-plate, GDL, RL, PBI/H₃PO₄ sol-gel membrane → Conductive media DC

Mass / energy balance (T_i)

 Gas channel, bipolar-plate, GDL, RL, PBI/H₃PO₄ sol-gel membrane → Heat transfer

Boundary condition		Note	Experimental data
Gas flow and pressure	Velocity (inlet) – calculated	Calculated	St. A 1.35
	$u_{i,in} = x_{i,in} \cdot \gamma_i \cdot J \cdot \frac{a_{MEA}}{a_{ch}} \cdot \frac{R \cdot T_f}{n \cdot F} \cdot \frac{1}{P_i}$		St. C 2.5
	$\begin{split} L_e \cdot \nabla_t \cdot \left(P \cdot I - \eta \cdot \left(\nabla_t u + (\nabla_t u)^T \right) \right) &= -\vec{n} \cdot P_{0,e} \\ \nabla_t u &= 0 \end{split}$	Measured	
	Pressure (outlet) – measured	(ambient pressure)	
	$\eta \cdot \left(\nabla_t u + (\nabla_t u)^T \right) \cdot \vec{n} = 0$		
	$P = P_{0,out}$		
Species	Mass fraction (inlet)	Gas composition	0.25 %RH A
	Convective flux (outlet)	Defined	4 %RH C
Charge	Cell voltage (cathode)	Defined	0.95-0.5 [V]
	Reference potential (anode)		
Solid phase temperature	Cell temperature	Defined (controlled)	150-180 [°C]
Fluid phase temperature	Gas temperature (inlet)	Measured	21 [°C]
	Convective flux (outlet)		

Element volume ratio: 0.06

COMSOL MP 3.4 / Quad-core 8GB Ram

i) PARDISO direct solver (±9000 s) $\varphi_i \rightarrow u, P \rightarrow \omega_i \rightarrow T_i$ ii) Segregated group solver (±4300 s) $u, P \rightarrow \omega_i \rightarrow T_i, \varphi_i$

Details:

Artificial diffusion (streamline) Problem solved sequentially using solver scripting Initial conditions updated Convergence criteria 1.10⁻⁶

All tests performed at the ZBT in Duisburg

Dedicated NI-LabVIEW controlled teststand for model 'validation'

Design:

• HTPEM single cell assembly (temperature controlled – heated aluminum endplate)

Bipolar-plates:

- Highly conductive (electrical and thermal) inhouse bipolar-plates (polyphenylene sulfide (PPS) based)*
- 6 channel parallel serpentine flow field (anode and cathode side)

Membrane electrode assembly:

- Highly doped commercially available PBI/H₃PO₄ sol-gel membrane (0.005 [m²])
- Similar to: $GDL \rightarrow E$ -tek (ELAT)
- Assumed loading 0.01 [kg·m⁻²] (anode) / 0.0075 [kg·m⁻²] (cathode) with a Pt/C-ratio of 0.3 [-]

*Derieth, T. et al., Development of highly filled graphite compounds as bipolar plate material for low and high temperature PEM fuel cells, J. New Mat. Electrochem. Systems 11 (2008)

Results (charge balance) - Operating conditions 160°C

Results (energy balance) - Operating conditions 160°C

Z B

$\mathbf{PBI/H}_{3}\mathbf{PO}_{4}$ sol-gel membrane modeling

Conductivity dependent on H₃PO₄ doping level

- \rightarrow Number of H₃PO₄ molecules per PBI repeat unit
- \rightarrow Here: Doping level X (and X-2) expressed using a density relation (similar to*)
- \rightarrow Amorphous phase volume fraction used to calculate (empirically) the
- Pre-exponential factor and
- Activation energy

*Cheddie, D. et al., A two-phase model of an intermediate temperature PEM fuel cell, Int. J. of Hydrogen Energy 32 (2007)

Results (charge balance) - Operating conditions 160°C – 170°C

*Xiao, L. et al., High-temperature polybenzimidazole fuel cell membranes via a sol-gel process, Chem. Mater. 17 (2005) **Chin, D.T. et al., On the conductivity of phosphoric acid electrolyte, J. Appl. Electrochem., 19 (1989)

Development of a 3D HTPEM model

 \rightarrow Ameliorated PBI/H $_3\text{PO}_4$ sol-gel membrane model development and shortly discussed

- \rightarrow Detailed solid- and fluid-phase temperature investigations
- \rightarrow Model not validated but rather compared with experimental data

Further development of a complete HTPEM single fuel cell assembly model by our group

• Update material parameters (continuously)

• Enhance electrochemical part of the model (e.g., agglomerate approach, H₃PO₄ distribution modeling?)

Large scale flow-field simulation (e.g., pressure losses) Tempering concepts (e.g. bipolarplate temperature distribution) Structural aspects (e.g., overall displacement)

Thank you very much!

Questions, comments? Discussion!