

α

Multiphysics Modeling of a Minimally Invasive Tissue Ablation Methodology

Josh Thomas, Jeff Crompton and Kyle Koppenhoefer

AltaSim Technologies

Certified Consultan

Radiofrequency tissue ablation

- Common therapeutic procedure to destroy diseased tissue
- Goal: sufficiently heat only the diseased region
- Typically necrosis achieved at temperatures above 50°C

www.comsol.com/blogs/study-radiofrequencytissue-ablation-using-simulation/ Walter Frei – Jan 20, 2016

Device inserted into heart and pressed against vessel wall

-Image source: Wikipedia

Deformation

disp_param(30)=0.00232 m Surface: Total displacement (cm)

Tissue ablation – Simulation challenges

- Multiphysics
- Intimate couplings
- Large tissue deformations
 - Geometric non-linearity
 - Meshing of collapsing volumes
- Contact
 - Mechanical
 - Electrical

Multiphysics couplings

- **Solid mechanics**
 - Large displacements
 - Electrode/tissue
- Laminar flow
 - **Electric currents**
 - heating Heat transfer
 - Convection
 - Perfusion (bio heat equation)
 - Conduction

Conjugate

transfer in

blood flow

heat

Deformed

geometry

MODEL DEVELOPMENT

Geometry

- Blood vessel
 - vessel wall
 - blood
- Electrodes
- Bulk tissue

5

0

5

Multiphysics implementation

RESULTS

Heating

Note: Temperature solution highly dependent on convection into blood flow

Deformation

Flow

Heating

Undeformed

Sphere displacement = 0 mm

Deformed

Sphere displacement = 2.32 mm

17

Note:

Temperature of diseased tissue 1) highly dependent on deformed shape

Vessel

(°C)

Without deformation the 2) model predicts no necrosis; with deformation complete necrosis through the thickness

EALIZING TOMODOOW'S TECHNOLOG

Arc length (m)

Heating

Heating

REALIZING TOMORROW'S TECHNOLOG

No bio heat Equation

$$\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot k \nabla T = \frac{1}{2} \Re (\mathbf{J}^* \cdot \mathbf{E})$$

Add bio heat equation to bulk (Perfusion)

$$\rho C_p \frac{\partial T}{\partial t} - \nabla \cdot k \nabla T = \frac{1}{2} \Re (\mathbf{J}^* \cdot \mathbf{E}) + \rho_b C_{p,b} \omega_b (T_b - T)$$

Summary

- RF tissue ablation model/methodology
- Critical factors identified
 - tissue deformation and blood flow critical
 - perfusion has a relatively small effect on killed tissue zone size

Further implementation

