### COMSOL CONFERENCE 2017 BOSTON

Session : MEMS & Nanotechnology 2

### Simulation of Silicon Nanodevices at Cryogenic Temperatures for Quantum Computing

#### Fahd Mohiyaddin<sup>1,2</sup>, Franklin Curtis<sup>1,2</sup>, Nance Ericson<sup>1,3</sup> and

Travis Humble<sup>1,2</sup>

<sup>1</sup>Quantum Computing Institute

<sup>2</sup>Computational Sciences and Engineering Division

<sup>3</sup>Electrical and Electronics Systems Research Division

This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.





Silicon Quantum Computing

**Computational Workflow** 

Modeling Qubit Devices with COMSOL



#### Silicon Quantum Computing

**Computational Workflow** 

Modeling Qubit Devices with COMSOL



## **Quantum Computation**



Quantum mechanical laws allow qubits to represent & process exponentially more information than bits ! Information on 300 qubits → Number of particles in the entire universe !



## **Silicon Quantum Computation – Modeling Parameters**



#### Silicon Quantum Computing

**Computational Workflow** 

Modeling Qubit Devices with COMSOL



### **Computational Workflow for Designing Silicon Donor Qubits**



**Output : Spin States, Coherence/Relaxation times, Quantum Gate Fidelity** 

T. S. Humble et. al, Nanotechnology, 27, 42 (2016)



#### Silicon Quantum Computing

#### **Computational Workflow**

#### Modeling Qubit Devies with COMSOL



### **Test Device Model & Equations**



Poisson & Current Continuity : *n* , *p*, *V* 

**Dependent Variables :**  $E_c, E_v, E_{fn}, E_{fp}, n_i$ 

#### **Ohmic Boundary Condition**

 $\nabla \cdot (\boldsymbol{\epsilon} \nabla V) = -q \left( p - n + N_{D^+} - N_{A^-} \right)$  $\frac{\partial n}{\partial t} = \frac{1}{q} \left( \nabla \cdot \mathbf{J}_n \right) - U_n$  $\frac{\partial p}{\partial t} = -\frac{1}{q} \left( \nabla \cdot \mathbf{J}_p \right) - U_p$ 

$$\begin{split} n &= N_C \; F_{1/2} \left( \frac{E_{F_n} - E_c}{k_B T} \right) \quad N_{D^+} = \frac{N_D}{1 + g_D \exp\left(\frac{E_{F_n} - E_D}{k_B T}\right)} \\ p &= N_V \; F_{1/2} \left( \frac{E_v - E_{F_p}}{k_B T} \right) \quad N_{A^-} = \frac{N_A}{1 + g_A \exp\left(\frac{E_A - E_{F_p}}{k_B T}\right)} \\ E_c &= -\chi - qV \quad E_v = -\chi - E_g - qV \\ n_i &= \sqrt{N_c N_v} \exp\left(-E_g/2k_B T\right) \end{split}$$

$$n_{eq} - p_{eq} + N_a^- - N_d^+ = 0$$

$$n_{eq} = \frac{1}{2} \left( N_d^+ - N_a^- \right) + \frac{1}{2} \sqrt{\left( N_d^+ - N_a^- \right)^2 + 4\gamma_n \gamma_p n_i^2}$$

$$p_{eq} = -\frac{1}{2} \left( N_d^+ - N_a^- \right) + \frac{1}{2} \sqrt{\left( N_d^+ - N_a^- \right)^2 + 4\gamma_n \gamma_p n_i^2}$$

$$V_{eq} = V_0 - \chi - \frac{E_g}{2q} + \frac{k_B T}{q} \left( \log \left( \frac{n_{eq}}{\gamma_n n_i} \right) + \frac{1}{2} \log \left( \frac{N_v}{N_c} \right) \right)$$



### **Challenges at Low Temperature**



### **Guidelines for Low Temperature Convergence**

**1.** Approximate hole densities  $p = n_i^2/n$ 

Reduce Number of degrees of freedom to be solved for

#### **2.** Use Finite Element Log Discretization

Solve for the Log of electron density which has smaller spatial gradients than electron density

## **3. Modify equations appropriately**

Minimize divide-by-zero-errors

**e.g.**  $n_i = \sqrt{N_c N_v} \exp\left(-E_g/2k_BT\right)$  $V_{eq} = V_0 - \chi - \frac{E_g}{2q} + \frac{k_B T}{q} \left(\log\left(\frac{n_{eq}}{\gamma_n n_i}\right) + \frac{1}{2}\log\left(\frac{N_v}{N_c}\right)\right) \longrightarrow V_{eq} = V_0 - \chi + \frac{k_B T}{q} \left(\log\left(\frac{n_{eq}}{\gamma_n N_c}\right)\right)$ 



5. Use proper initial guesses for electron density

Set appropriate scaling factors in the Jacobian Matrix









### **Device Electrostatics at 15 K**



Device electrostatics (n,  $E_c$  and F) from COMSOL can (a) simulate locations for spin-readout and (b) electric fields experienced by <sup>31</sup>P electron qubits, and is consistent with our understanding and other semiconductor packages.



Conduction Band Energy E<sub>c</sub> (meV)

Electric Field

|F| (MV/m)

### **Comparison with Higher Temperatures**

300 K – 15 K 20 K – 15 K E<sub>c</sub>(300K) -E<sub>c</sub>(15K) **Donor Gate Donor Gate** Top Gate (meV) SiO<sub>2</sub> SiO<sub>2</sub> -10 -10 160 140 -20 -20 120 **(mu**) -30 z (**mu**) z 100 80 -40 -40 60 -50 -60 -50 -60 -40 -40 -20 20 -20 0 y (nm) y (nm)



#### **Gradients over 5K**





Over 5 K, typical accuracies of conduction band energy is ~ 1 meV and electric field ~ 0.1 MV/m



# Summary

- Electrostatic calculations are an integral part of a computational workflow needed to design silicon donor qubits for quantum computing.
- Simulating electrostatics at low temperature poses convergence issues as several parameters such as carrier densities scale exponentially at low temperature.
- We have provided a guideline of simulating electrostatics at low temperatures and have achieved convergence down to 15 K for a test nanostructure.
- The electrostatics at 15 K with COMSOL yield expected results for the position of charge reservoirs, donors, conduction band and electric fields.
- We then compared the results at 15 K to higher temperatures to quantify the accuracy of device electrostatics with temperature.

F.A. Mohiyaddin et. al, COMSOL Conference 2017 (2017)













### COMSOL CONFERENCE 2017 BOSTON

Session : MEMS & Nanotechnology 2

### Simulation of Silicon Nanodevices at Cryogenic Temperatures for Quantum Computing

#### Fahd Mohiyaddin<sup>1,2</sup>, Franklin Curtis<sup>1,2</sup>, Nance Ericson<sup>1,3</sup> and

Travis Humble<sup>1,2</sup>

<sup>1</sup>Quantum Computing Institute

<sup>2</sup>Computational Sciences and Engineering Division

<sup>3</sup>Electrical and Electronics Systems Research Division

This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy.



