

Simulation of Neurotransmitter Sensing by Cyclic Voltammetry under Mechanical Motion of a Neural Electrode

S. Han¹, M. Polanco², S. Bawab², H. Yoon¹

¹Neural Engineering and Nano-Electronics Laboratory, Center for Materials Research, Norfolk State University, Norfolk, VA, USA

² Mechanical and Aerospace Engineering Department, Old Dominion University, Norfolk, VA, USA

I. INTRODUCTION

- Real-time sensing of neurotransmitters has been enabled with cyclic voltammetry (CV). By applying sweeping potentials, cyclic voltammetry (CV) can detect the neurotransmitters and identify their chemical kinetics.
- Neural electrodes for electrochemical sensing of neurotransmitters are inserted into a brain, while in-vivo

III. SIMULATION RESULTS AND DISCUSSIONS

- real time sensing is performed, These electrodes transmit electrical signals produced by kinetic reaction of neurotransmitters during CV.
- However, internal and external motion of a subject causes dynamic motion of electrode that can significantly disturb sensing signals.
- In this research, to assess and analyze the effect of dynamic motion, multiphysics simulation of cyclic voltammetry is performed with key mechanical and electrical parameter and variables.

II. SIMULATION CONFIGURATIONS & DESCRIPTIONS OF APPLIED PHYSICS

A. 2D Geometry and Mesh

B. Applied Physics

1. Diffusion and Transport $\frac{\partial c_i}{\partial t} + \nabla \cdot (-D_i \nabla c_i) = R_i, R_i = \frac{v_i i_{loc}}{nF}$ < v_i : stoichiometric coefficient, n=number of electrons, F= Faraday constant>

2. Electrochemical analysis

$$i_{loc} = nFk_0 \left(c_{red} exp \frac{(n-\alpha_c)F\eta}{RT} - c_{ox} exp \frac{(-\alpha_c)F\eta}{RT} \right) (\eta = \phi_{s,ext} - E_{eq})$$

$$i_{dl} = \left(\frac{\partial \phi_s}{\partial t}\right) C_{dl}$$

< Butler-Volmer equation / double layer capacitance>

3. Solid Mechanics

Electrode :
$$\rho \frac{\partial^2 u}{\partial t^2} - \nabla \cdot \sigma = F \nu$$
 (ν = poisson's ratio)

IV. CONCLUSION

While neurotransmitters are detected with electrodes implanted in the brain, mechanical impact can significantly disturb the sensing signals from neurotransmitters.

A multiphysics simulation was newly developed, and the electrochemical-mechanical coupling is well captured with varied double Layer Capacitance, scan rate and mechanical frequency and friction.

υι

Brain : Kelvin-Voigt viscoelastic with a relaxation 12.5 ms time

C. Simulation Variables and Parameters

	Variables	Notation	Values(unit)
Electrochemistry	Double Layer Capacitance	С	$0.01, 0.1(F/m^2)$
	Scan rate	\mathcal{V}	2, 4, 8 and 400 (<i>V</i> / <i>s</i>)
Dynamics	Amplitude	Α	1(μm) sinusoidal
	Frequency	f	0.1, 1 (Hz)
	Friction Coefficient	μ	0, 0.1, 0.3, 1

Acknowledgement

This work is partially supported by the NSF-RISE Grant (HRD 1345215). **References**

- 1. Patel, Jyoti C, Voltammetry: Electrochemical Detection of Neurotransmitters in the Brain. In: eLS. John Wiley & Sons Ltd, Chichester, Jan 2016
- 2. Bard, Allen J., and Larry R. Faulkner. *Electrochemical Methods: Fundamentals and Applications.* New York: Wiley, 2001
- Alessandro Lavacchi U. Bardi C. Borri S. Caporali A. Fossati I. Perissi, "Cyclic voltammetry simulation at microelectrode arrays with COMSOL MultiphysicsTM" J. Appl Electrochem, 2009, 39:2159-2163
 Hyunjung Lee, Ravi V Bellamkonda, Wei Sun and Marc E Levenston, "Biomechanical analysis of silicon microelectrode-induced strain in the brain", J.

Neural Engineering, 2 (2005) 81–89

Excerpt from the Proceedings of the 2017 COMSOL Conference in Boston