

BE CAE & Test

How Apps Can Support COMSOL Multiphysics® Users?

Giuseppe Petrone and Carmelo Barbagallo BE CAE & TEST, Viale Africa 170 Sc. A, 95129 Catania (ITALY)

Rotterdam, 18-20 October 2017

http://www.be-caetest.it

BE CAE & Test (<u>http://www.be-caetest.it</u>) provides consultancy services in several industrial sectors by using innovative **CAD/CAE modelling tools** and carrying out **experimental campaigns**

The company collaborates with **industrial partners** and **research centers** in several technologic fields

https://www.comsol.it/certified-consultants

Fluid dynamics and thermal analyses

- Environmental energetics (HVAC, thermal comfort, IAQ)
- Industrial energetics (Thermal design, energy conversion, reacting flows)

Structural analyses

 Linear and non-linear statics, dynamic and vibro-acoustics analyses in industrial and civil applications

System dynamics and Multi-Body analyses

- Vehicle and rail dynamics (handling, ride comfort)
- Kinematics, dynamics, rigid and flexible bodies analyses of mechanisms

Experimental testing

- Ride comfort (NVH), modal analyses
- Vibro-acoustics
- Indoor micro-climate

- Flow-chart for "traditional" CAE activities
 - 1. Topics / targets / feasibility study
 - 2. Data transmission (CAD, functional / operative conditions, ...)
 - 3. Model set-up (equations, parameters / functions, BC, meshing, solvers, ...)
 - 4. Test run /numerical study of the model / numerical-experimental validation
 - 5. Parametric runs for predictive analyses

>> REPORT RELEASE <<

BE CAE & Test / A new perspective

Why building a COMSOL App*?

"... Apps mark a **revolutionary page in** the history of mathematical **modeling** and numerical simulation: these specialized and <u>user-friendly</u> <u>tools bring the power of numerical simulation to a larger group of</u> <u>users...</u>"

"... <u>people</u> with no prior experience from FEA or mathematical modeling <u>can access, exploit, and benefit from analysis..."</u>

"...simulation apps can create <u>more business opportunities with</u> <u>customers</u>. Beyond simply providing them with a technical report, you are also <u>supplying them with an interactive tool...they can use to</u> <u>investigate the problem on their own ..."</u>

* Extract from COMSOL Press Release «Simulation Apps Pave New Frontier for Virtual Prototyping of Surface-Mount Devices» https://www.comsol.com/press/news/article/3231/

FROM MODEL TO APP

COMSOL App / What is it?

What is a COMSOL App?

- Customized GUI allowing users to carry-out parametrical simulations without build models
- Which kind of «parametric» analysis?
 - Geometrical

...

- **Constitutive**: materials, assumption (i.e. plasticity model in structural analysis, flow regime in fluid dynamics, ...)
- Funcional: any operational or working condition
- **Derived value**: any value derived from FE dependent variable solved (i.e. a thermal flux from temperature solution in thermal analysis)

* Extract from COMSOL Press Release «Simulation Apps Pave New Frontier for Virtual Prototyping of Surface-Mount Devices» https://www.comsol.com/press/news/article/3231/

FROM MODEL TO APP

7

FOOD THERMAL TREATING

- "Food thermal treatment": procedures for destroying microorganisms by the <u>application of</u> <u>heat</u>.
- Numerical model allowed simulating the heat transfer during a given process implemented for food sterilization.
- It is needed a flexible tool allowing modification of product type, quantity, shape of tray, type of heating cycle,...
- Some specific quality indexes for the process need to computed in post-processing analysis.

COMSOL App / Heat transfer in canned food

A parametric geometry...

Customized libraries for material choice: "canned food (product)" and "headspace"

Choice of applied thermal process (retort temperature)

Post-processing: thermal maps, animation of transient analysis, probe values...

Graphical interface built by using some of the Form Editor features

SIMULATION OF HEAT TREATING PROCESSES

- Optimizing the heating/cooling equipment.
- Monitoring the time evolution of the pieces "core" temperature as a function of :
 - Size;
 - Constituting material;
 - Relative position of the pieces in the cooling equipment;
 - Magnitude of the cooling forced flow.

This kind of study can be carried out by **three steps**, setting <u>different boundary conditions</u> and physical <u>variables coupling from one step to</u> <u>another</u>:

- 1. Fluid dynamical solution of the permanent velocity field;
- 2. Steady thermal simulation of temperature distribution at cooling process beginning;
- **3. Transient thermal analysis** during the cooling process.

Build an App for managing a sequence of computational steps to be run by using different physical settings

A Component 1 (comp1) Application Component 1 (comp1) Builder Model Model Definitions Geometry Materials Model Settings Parameters Parameters BE_Munich_app_v08.mph (root) Parameters Be_Munich_app_v08.mph (root) Parameters Materials Name Expression Value Descripti Jair_in 0.5 m/s 2015 m/s	
Model Builder Settings Parameters Parameters Global Definitions Parameters Bit Materials Name Expression Value Discripti Component 1 (comp1) Discripti	\langle
Component 1 (comp1) Series Component 1 (comp1)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, ,
Image: A constraint of the constra	Res
process parameters Input data Parametric» analysis Nx, sphere: 3 Ny, sphere: 3<	
dimension, duct dimensions)	
 Functional (Coolant flowrate and temperature, initial spheres temperature) Physical data Physical input Air velocity: 0.5 Air temperature: 20 Sphere temperature: 100 	_ m/s _℃℃

COMSOL App / Controlled cooling of metal sheres

Physics setting (Specific BC are used for computing specific initial thermal states exploited as initial solution for transient analysis)

«Manual» work-flow by using the embedded model:

•	Run < Study 1 – Fluid > for solving the velocity and pressure fileds	Waiting for
•	Set (enable) specific BCs (surface spheres temperature)	solution
•	Run < Study 2 – Therm init > to get a specific thermal state (or distribution) at the initial time	Waiting for
•	Disable specific BCs (surface spheres temperature)	solution
•	Run < Study 3 – Therm trans > to perform the transient analysis	

18

Application Builder	Preview X main X geometry_input X	physical_input ×	Settings		- #
← → ↑ ↓ ■↑ ■↓ ▲ BE_Munich_app_v08.mph (root) ▶	CONTROLLED COOLING	OF METAL SPI D data	Button	Show as Dialog	3
 contact_us geometry velocity temperature init 	Geometry N x sphere: 3	Geometry Velocity Te	^{**} Comando	Icona	Argomenti
temperature_spheres		>	Abilita T_init_sphere (disattivare in transitorio)		
	Errors and Warnings	~ ∓ ×	Calcola Study 2 - Thermal Init Disabilita T_init_sphere (disattivare in transitori) Ø	
□ = reset_to_default ▷ IIII Libraries	Method Line Message		Calcola Study 3 - Thermal Trans Grafica Velocità (spf)	-	main/graphics1
			Grafica Temperatura (ht)		main/graphics3
			Plot 1D Plot Group 9 - 1_spheres III Plot 1D Plot Group 10 - T_outlet IIII		

«Manual» work flow by using the embedded model:

- Run < Study 1 Fluid > for solving the velocity and pressure fileds
- Set (enable) specific BCs (surface spheres temperature)
- Run < Study 2 Therm init > to get a specific thermal state (or distribution) at the initial time
- Disable specific BCs (surface spheres temperature)
- Run < Study 3 Therm trans > to perform the transient analysis

The Application Builder allows to <u>EXECUTE a «work-flow» of commands</u> by a single «action button»

«Manual» work flow by using the embedded model:

- Run < Study 1 Fluid > for solving the velocity and pressure fileds
- Set (enable) specific BCs (surface spheres temperature)
- Run < Study 2 Therm init > to get a specific thermal state (or distribution) at the initial time
- Disable specific BCs (surface spheres temperature)
- Run < Study 3 Therm trans > to perform the transient analysis

*=

Contact us

0

100

About

COMSOL App / Controlled cooling of metal sheres

BE CAE & TEST S.r.l.

Viale Africa 170, Sc.A 95129 Catania (Italy)

Phone+39 095 216 64 26URL:http://www.be-caetest.itE-mail:info@be-caetest.it

PEC: info@pec.be-caetest.it

FROM MODEL TO APP

Build	Compute	S Reset data	Animation		Layout	La Contact us
nput data		Geor	metry de C	emperadre (t=0) So		ir temperature (t)
Geometry				ale and the state of the	(CIN)	in terriperatore (t)
N x sphere:	3			V - 1× 1/4 18		0
N y sphere:	3		1	sli Te o tur	degC)	
Height:	0.04				0.04	
Radius:	0.005 m	$\langle \cdot \rangle$	21		°	100
			うえし		0.03	80
hysical da	ta				0.02	60
 Physical inj 	put 🥑			84888	0.01	40
Air velocity:	0.5		.7	80		30 20
Air temperatu	ure: 20	C	Y X		0.05	
Sphere tempe	erature: 100	°C		0		
redits						
BE CAE & Test	t S.r.I					CHE & TEST

THANK YOU!

https://www.comsol.it/certified-consultants/bus

P.IVA (VAT number), C.F., Num. Reg. Impr.: 05230570870 - Numero REA : CT-352317