

Simulation of CMOS Compatible Sensor Structures for Dielectrophoretic Biomolecule Immobilization

IHP - Frankfurt (Oder) - Germany

Honeyeh Matbaechi Ettehad, Subhajit Guha, Christian Wenger

innovations for high performance microelectronics

19.10.2017

Comsol Conference 2017, Rotterdam, Netherlands

1	Introduction
2	Theory and use of COMSOL Multiphysics
3	Computational Methods
4	Results

Agenda

Theory and use of COMSOL Multiphysics Computational Methods Results	Introduction
Computational Methods Results	Theory and use of COMSOL Multiphysics
Results	Computational Methods
	Results

Introduction

Development of a lab-on-chip device for virus immobilization and detection

- □ Electrical immobilization of viruses on immobilizing electrodes > Dielectrophoresis
- Sensing and analysis of the immobilized viruses -> All electrical biosensor
- □ Silicon microelectronics compatible -> operating in CMOS/BiCMOS technology

.

1 2

3

Theory and use of COMSOL Multiphysics

Computational Methods

Introduction

4 Resi

Results

Theory: electrode structure

њр

Established electrode structure for RF sensing

- □ Interdigitated electrodes (IDE) -> used as sensor
- □ Same electrode structure -> used for immobilizing of viruses

www.ihp-microelectronics.com | © 2016 - All rights reserved | COMSOL Conference Rotterdam, 2017

Theory: Dielectrophoresis (DEP) principles

Dielectrophoresis -> electrical immobilization of particles

□ Non Uniform electric field effect on particles

Dependent on -> permittivity, conductivity, particle size and electric field

Use of Comsol Multiphysics (version 5.3)

Multiphysics tool COMSOL is used -> immobilization analysis

□ Three modules used : Electric current, fluid flow, particle tracing

Governing equations:

 \Box Dielectrophoresis : $F_{DEP} = 2\pi r_p^3 \varepsilon_f Re(f_{CM}) \nabla |E|^2$

www.ihp-microelectronics.com | © 2016 - All rights reserved | COMSOL Conference Rotterdam, 2017

Agenda

1 Intro	oduction	
2 The	ory and use of COMSOL Multiphysics	
Com	nputational Methods	
Resu	ults	

Computational Methods

Generation of non-uniform electric field gradient using IDE

- □ Positive DEP for applied voltage: particles are attracted
- □ Tuning parameters: voltage, flow-velocity, IDE geometry

Agenda

Introduction
Theory and use of COMSOL Multiphysics
Computational Methods
Results

Results: Clausius-Mosotti factor

Clausius-Mosotti factor -> function of permittivity & conductivity

- □ Frequency dependent parameter : positive and negative dielectrophoresis
- □ Choice of operating frequency -> for positive dielectrophoresis

ihp

Results: Influence of voltage

The applied voltage influences the particle attraction

- Dependent on the size of the particle
- □ Smaller particles require higher voltage with the same fluid velocity

Results : Influence of fluid velocity

The attraction of the particle is dependent on fluid velocity

- Attraction of the particle takes place when DEP force nullifies the drag force
- □ For same voltage, lower fluid velocity aids in better attraction

Results: influence of electrode geometry

Electrode geometry helps in forming non-uniform electric field

- □ Asymmetric geometry : unequal width and spacing of electrode is better
- □ Width of electrode > spacing, the influence of non uniform field is higher

Conclusion and Acknowledgement

- □ Electrode structure which is used for RF sensing can be also be used for immobilization.
- □ COMSOL Multiphysics is a useful tool for such for co-simulations.
- Dielectrophoresis is dependent on the voltage, flow velocity and geometry of the electrode.
- In CMOS compatible Technology for a given geometry of electrodes the only variation parameter is fluid velocity.

EUROPÄISCHE UNION D Europäischer Fonds für C Regionale Entwicklung

^{DN} Dieses Projekt wird durch Mittel des Europäischen Fonds für Regionale Entwicklung gefördert. Copyright © 2016 - 2017. All Rights Reserved.

Thank you for your attention!

Matbaechi Ettehad, Honeyeh

IHP – Innovations for High Performance Microelectronics
Im Technologiepark 25
15236 Frankfurt (Oder)
Germany
Phone: +49 (0) 335 5625 663
Fax: +49 (0) 335 5625 681
Email: matbaechi@ihp-microelectronics.com

www.ihp-microelectronics.com

innovations for high performance microelectronics

