

Modeling the chloride-induced corrosion initiation of steel rebar in concrete

<u>Pouria Ghods</u>, Kosta Karadakis Supervisor: O. Burkan Isgor Carleton University Department of Civil and Environmental Engineering

October 8th, 2009

COMSOL 2009

Outline:

- □ Introduction
- Modeling: Chemistry of Concrete Pore Solution
- Modeling: Transport of Ionic Species
- Modeling: Domain and Boundary Conditions
- □ Results
- □ Conclusion

Introduction:

- □ Generally-stable passive film formed on the steel surface under high alkaline conditions protects the steel against corrosion.
- □ Once passive film is destroyed (depassivation), corrosion will start.
- □ Mill-scale is an insoluble oxide layer that forms during steel production.
- It is approximately 50 μm thick, crystalline in nature but poorly and nonuniformly attached to the rebar surface.

Introduction:

- □ Corrosion preferentially initiates in the mill-scale crevices.
- Objective of this research is to explain the changes in chemistry of pore solution inside mill-scale crevices.
- □ Specifically to investigate the changes in the Cl⁻/OH⁻, which is an indicator of depassivation process.

Modeling: Chemistry of Concrete Pore Solution

- □ pH of concrete varies between 12.5 and 13.5.
- Solution 1(pH=12.5): 9 species were considered in concrete pore solution:
 - OH^- , $OH_{(s)}$, Fe^{2+} , $Fe_{(s)}$, Ca^{2+} , $Ca_{(s)}$, Cl^- , Na^+ , O_2
- Solution 2 (pH=13.5): 10 species were considered in concrete pore solution:
 - OH^- , $OH_{(s)}$, Fe^{2+} , $Fe_{(s)}$, Ca^{2+} , $Ca_{(s)}$, Cl^- , Na^+ , K^+ , O_2

Modeling: Chemistry of Concrete Pore Solution

□ Reversible chemical reactions:

 $Ca^{2+}_{(aq)} + 2OH^{-}_{(aq)} \xleftarrow{K_{sp1}} Ca(OH)_{2(s)}$ $Fe^{2+}_{(aq)} + 2OH^{-}_{(aq)} \xleftarrow{K_{sp2}} Fe(OH)_{2(s)}$

Solubility relations:

 $\gamma_{Ca}[Ca^{2+}] \gamma_{OH}^{2} [OH^{-}]^{2} = Ksp1$

 $\gamma_{\text{Fe}} \,[\text{Fe}^{2+}] \,\gamma_{\text{OH}}^2 [\text{OH}^-]^2 = \text{Ksp2}$

• $Ca(OH)_{2(s)}$ and $Fe(OH)_{2(s)}$ relation:

 $2{[Fe](s) + [Ca](s)} = [OH](s)$

Modeling: Transport of Ionic Species

Nernst-Planck differential equation

Poisson's equation(electroneutrality)

$$\nabla^2 \phi + \frac{F}{\varepsilon} \sum_{i=1}^N z_i c_i = 0$$

 c_i = concentration of species in the ionic state (mol/m³) c_i = concentration of species in the solid state (mol/m³)

- ϕ = potential gradient (V)
- γ_i = chemical activity coefficient
- D_i = diffusion coefficient (m²/s)
- z_i = valence of the species
- R = ideal gas constant (8.3143 J/mol/K)
- T = constant temperature (298K)
- F = Faraday's constant (96488 C/mol)
- ε = dielectric constant (7.092 x ⁻¹⁰ C²/N/m²)

Modeling: Transport of Ionic Species

□ Modified Davies equation (Activity calculation)

$$\ln \gamma_i = -\frac{A z_i^2 \sqrt{I}}{1 + a_i B \sqrt{I}} + \frac{(0.2 - 4.17 \times 10^{-5} I) A z_i^2 I}{\sqrt{1000}}$$

where a_i is the radii of the ions, A and B are temperature dependent parameters, and I is the ionic strength of the solution

$$A = \frac{\sqrt{2F^2}e_0}{8\pi(\epsilon RT)^{3/2}} \qquad B = \sqrt{\frac{2F^2}{\epsilon RT}} \qquad I = 0.5\sum_{i=1}^N z_i^2 c_i$$

Transient nonlinear finite element model was solved using COMSOL software

Modeling: Domain and Boundary Conditions

Results – Oxygen, Chloride

- □ pH = 12.5, passive current density of 0.01 A/m², 0.5 M chloride in bulk solution
- \square crack width = 0.1 µm, crevice length = 1 mm

Results - pH, Chloride-to-Hydroxide ratio

□ pH = 12.5, passive current density of 0.01 A/m², 0.5 M chloride in bulk solution

Results – Chloride-to-Hydroxide ratio

- \Box Cl⁻/OH⁻ at different concrete pore solutions (pH = 12.5, pH=13.5)
- □ Passive current density of 0.01 A/m², Cl⁻/OH⁻ = 0.32, crack width = $0.1 \mu m$, crevice length = 1mm

Conclusions

- The corrosion of rebar in concrete, a combination of electrochemical reaction and coupled ionic transport equation of several species, was successfully modeled using COMSOL(Ver. 3.5)
- □ The probability of corrosion initiation in the millscale crevices are higher:
 - Local acidification in crevice (reduction of OH⁻)
 - Accumulation of chloride ions
 - Increasing chloride-to-hydroxide ratio (Cl⁻/OH⁻), which is considered to be a key factor in corrosion initiation.

Thank You