
Parallel Performance Studies for COMSOL Multiphysics Using

Scripting and Batch Processing

Noemi Petra and Matthias K. Gobbert

Department of Mathematics and Statistics, University of Maryland, Baltimore County,
1000 Hilltop Circle, Baltimore, MD 21250, {znoemi1,gobbert}@math.umbc.edu

Abstract: The graphical user interface (GUI)
of COMSOL Multiphysics offers an effective en-
vironment to get started solving problems. For
reproducibility of the results, it is often desir-
able to explore the script-based modeling capabil-
ities of COMSOL with MATLAB. There are also
potential benefits of running COMSOL in paral-
lel, specifically by running several computational
threads in shared-memory parallelism mode. We
use the scripting abilities of COMSOL with MAT-
LAB to study the shared-memory parallel per-
formance of COMSOL, that is, the solution time
required by using multi-threading on one multi-
processor, multi-core computer with shared mem-
ory among the processors. The performance results
show that using more than one thread saves time,
but the speedup is not in proportion to the number
of cores used.

Key words: Poisson equation, COMSOL with
MATLAB, shared-memory parallelism.

1 Introduction

COMSOL Multiphysics is an excellent, state-of-
the-art software for the solution of many types of
partial differential equations (PDEs), both station-
ary and time-dependent, by numerical techniques
based on the finite element method for the spatial
discretization. Some of its key features include its
CAD capabilities for the creation of complicated
2-D or 3-D domains and its sophisticated mesh-
ing capabilities. These highly visible features are
accessible through the Java-based graphical user
interface (GUI). Beginning users will start to learn
the software by using this GUI, and this is suitable
for the immediate solution of a problem. To en-

sure reproducibility of one’s research results, or to
perform parameter studies, the use of the GUI is
not ideal. These problems are addressed by COM-
SOL’s capabilities for scripting. For a classical
model problem specified in Section 2, this paper
will show concretely in Section 3 how to transi-
tion from COMSOL’s GUI to m-files in conjunc-
tion with MATLAB as scripting tool under Linux.
We use the scripts in Section 4 to investigate and
report on the parallel performance of COMSOL.
For such a test, it is important to be able to per-
form several runs easily and reproducibly. We see
that this is easily possible by changing just a few
lines in an m-file saved from COMSOL’s GUI.

In [3], the authors reported on performance stud-
ies for multi-threading in MATLAB. Their results
demonstrate that the use of more than one thread
is often not very beneficial for MATLAB code.
In [2], the authors run COMSOL in two ways:
(i) COMSOL with MATLAB and (ii) COMSOL
in batch mode (standalone COMSOL) to avoid
any influence of MATLAB in their performance re-
port. The results reported there suggest that the
speedup is not in proportion to the number of cores
used, independent of the way COMSOL is run. In
this paper, our primary goal is to extend the stud-
ies from [2] to Lagrange finite elements of higher
degrees. We focus on the linear solver PARDISO,
since it performed the best in [2] and it is expected
to profit most from multi-threading on a shared
memory node. Specifically, our studies tests if the
speedup measured for PARDISO improves with in-
creasing polynomial degree of the Lagrange finite
elements in COMSOL. Our findings suggest that it
saves time to use more than one thread, with the
most improvement from one to two threads, which
is expected on a cluster node with two dual-core
processors (as opposed to one quad-core processor,

1

Excerpt from the Proceedings of the COMSOL Conference 2009 Boston

for instance). However, the performance improve-
ment does not get better with increasing the order
of the polynomial degrees.

The numerical studies in this report were per-
formed on one cluster node of the distributed-
memory Linux cluster hpc in the UMBC
High Performance Computing Facility (HPCF;
www.umbc.edu/hpcf). The node used has two
dual-core AMD Opteron 2.66 GHz processor
(1 MB cache per core) and 17 GB memory.

2 Test Problem

As model problem, we consider the classical elliptic
test problem, given by the Poisson equation with
homogeneous Dirichlet boundary conditions

−∆u = f in Ω,
u = 0 on ∂Ω, (2.1)

on the unit square Ω = (0, 1) × (0, 1) ⊂ R2. Here,
∂Ω denotes the boundary of the domain Ω, and the
Laplace operator ∆ is defined as ∆u = uxx + uyy
in two spatial dimensions. To test the numerical
method, we consider the elliptic problem (2.1) with
right-hand side function

f(x, y) =− 2π2 cos(2πx) sin2(πy)

− 2π2 sin2(πx) cos(2πy),

for which the problem admits the known true so-
lution

u(x, y) = sin2(πx) sin2(πy). (2.2)

After solving this boundary value problem via
COMSOL, the attention typically shifts to the goal
of gaining confidence in the correctness and accu-
racy of the computed solution. We make use of
the availability of the true solution and compute
the error between the FEM solution uh and the
true solution in the L2(Ω)-norm, which is defined
by

‖u− uh‖L2(Ω)
=
(∫∫

Ω

(u− uh)2 dx dy

)1/2

(2.3)

for a mesh spacing h which denotes the maximum
side length of the elements in the mesh used to
discretize the domain. By applying these results
repeatedly for progressively smaller mesh spacings
obtained by regularly refining a coarse initial mesh
several times, one can assess if the sequence of solu-
tions is converging as expected based on the theory
and understand the quality of the solution [1].

3 Use of COMSOL

This section explains how to use the graphical user
interface (GUI) of COMSOL Multiphysics to cre-
ate an m-file poisson2d.m that solves the PDE
under consideration with one regular mesh refine-
ment and linear Lagrange elements. We intend
to generalize this script after wards with all pos-
sible polynomial degrees 1 through 5, as well as
for several meshes, obtained by regular refinement
from a coarse initial mesh, and compare the tim-
ing results. More details on how to create a MAT-
LAB script file for numerical convergence studies
are available in [1].

To solve the model problem, start the GUI
of COMSOL Multiphysics, by typing comsol
at the Linux prompt, which is shorthand for
comsol multiphysics. In the Model Navigator
for the problem dimension select 2D, then select
COMSOL Multiphysics → PDE Modes → PDE,
Coefficient Form → Stationary analysis. For our
testing purposes it is important that linear La-
grange elements are selected at this stage. Then,
in the draw mode of the GUI, draw the desired
domain Ω = (0, 1) × (0, 1). To set up the source,
set f in the Physics → Subdomain Settings win-
dow to (-2*pi^2)*(cos(2*pi*x)*sin(pi*y)^2+
sin(pi*x)^2*cos(2*pi*y)). For our model prob-
lem, all other PDE and boundary coefficients are
at their default values.

Mesh the domain with an extremely coarse ini-
tial mesh, so that we can use several regular refine-
ment levels later. Thus, in the Mesh → Free Mesh
Parameters dialog window, we select the Prede-
fined mesh size as Extremely coarse; notice that
the Refinement method in 2D is Regular by de-
fault. This gives the initial mesh with 26 triangular
elements and 20 vertices shown in Figure 1 (a). In
order to have the command for mesh refinements
included in the script, we select the mesh refine-
ment button in the GUI once now; this subdivides
each triangular mesh element into four congruent
triangles to obtain a mesh with 104 elements and
65 vertices (not shown).

Since we expect the linear solver PARDISO
to have the best chance for performing well on
a multi-core processor, we select under Solve →
Solve Parameters the Linear System Solver “Di-
rect (PARDISO)”. Then have COMSOL solve the
problem using this linear solver on the mesh with
one regular refinement.

2

(a)

(b)

(c)

Figure 1: (a) Initial mesh of the unit square do-
main. (b) FEM solution and (c) FEM error using
linear Lagrange elements on a mesh with one reg-
ular mesh refinement.

The solution on this mesh, computed using the
linear Lagrange elements chosen in the Model Nav-
igator originally, is shown in Figure 1 (b). The
plot shown is the 3D Surface Plot of the solution,
without title, axes limits controlled manually, with
plot box, and axes labels added. Using the known
true solution (2.2), we can also plot the error by
replacing the default expression u by the expres-
sion for the error u-sin(pi*x)^2*sin(pi*y)^2 in
the Postprocessing → Plot Parameters dialog win-
dows; specifically, in the Surface tab, we replace
the expression both for the Surface Data and for
the Height Data with this expression. In the 3D
Surface Plot, without title, axes limits controlled
manually, with plot box, and with labels added,
this gives the plot in Figure 1 (c).

To compute the L2-norm of the error between
the FEM solution and the true solution given
by (2.3), have COMSOL first compute the square
of the norm by entering in the Postprocessing
→ Subdomain Integration window the expres-
sion (u-sin(pi*x)^2*sin(pi*y)^2)^2. COM-
SOL then computes the integral in (2.3), that is,
the square of the error norm. The value of integral
is reported in the report window located at the
bottom of the GUI, which in our case is 7.020117e-
4. To obtain the L2-norm error, take the square
root of this value (using a calculator or similar),
which gives you ‖u− uh‖L2(Ω)

≈ 2.6496e-2 for the
solution on this mesh.

At this point, create the m-file by saving the en-
tire interactive session in the GUI up to this point
as poisson2d.m using File→ Save As. We remind
the reader that to use the MATLAB scripting fea-
tures and actually have access to options like Save
As m-file, you must have COMSOL installed with
the MATLAB interface functions enabled during
installation; otherwise, your selection under Files
of Type will not include Model m-file.

We now modify the script file that was obtained
in the previous subsection to obtain an m-file that
solves the problem for a desired refinement level
r = 0, 1, . . . and for different Lagrange polynomial
degrees. At the same time, we add a few more ca-
pabilities to our function to output desired quan-
tities such as the elapsed wall clock time for the
solution process. Thus, edit the poisson2d.m and
save as poisson2d_matlab.m as follows:

3

• In the first line of the file, insert the function
header

function [fem, tsec] = ...
poisson2d_matlab(p, r)

This means that the function will accept the
degree of Lagrange finite elements p and the
number of regular mesh refinements r as in-
put variables. The function returns the COM-
SOL FEM object along with the elapsed wall
clock time in seconds (see below) to the calling
driver routine.

• Insert flreport(’off’) at the beginning
of the m-file, which suppresses the solution
progress report from COMSOL to make this
function suitable for running in the back-
ground.

• Search for the call to meshrefine and enclose
it in a for-loop of the number of refinements r
input in the function call:

for i = 1 : r
fem.mesh = ...
meshrefine(fem, ...

’mcase’,0, ...
’rmethod’,’regular’);

end;

• Search for the choice of the finite el-
ements used and replace the line
prop.elemdefault=’Lag1’ by

prop.elemdefault=sprintf(’Lag\%1d’,p);

This sprintf command appends the number
p to the string “Lag” and thus allows us to
choose the degree of the Lagrange elements as
input to this function.

• Insert the tic and toc functions before and
after the solve command femstatic, respec-
tively, to measure the elapsed wall clock time.

• Delete (or comment out) all plot commands
such as postplot and postint.

This completes the conversion of the COM-
SOL script poisson2d.m to the function
poisson2d_matlab.m. Since this is a function, we
can now write a script driver_poisson2d.m that
calls the function poisson2d_matlab.m repeatedly
for all desired values of Lagrange degree p and
refinement level r, using for-loops such as

for p = 1 : 5
...
for r = nrefmin : nrefmax
[fem, tsec] = ...
poisson2d_matlab (p, r);

I1=postint(fem, ...
’(u-sin(pi*x)^2*sin(pi*y)^2)^2’, ...
’unit’,’’, ...
’recover’,’off’, ...
’dl’,1);

errnorm = sqrt(I1);
...

end;
end;

It is worth mentioning here that the use of higher
Lagrange elements increases the number of degrees
of freedoms and hence the dimension of the prob-
lem. Therefore, so that all data structures fit in the
available memory of the computer, we choose dif-
ferent values of nrefmin and nrefmax for different
values of p; this control logic between the two for-
loops is not shown above. We show here also how
the postint command, saved as part of the orig-
inal script poisson2d.m, can be moved here and
then used to compute the L2-norm by sqrt(I1).
The remainder of the script (not shown) outputs
various other quantities that will appear in the ta-
ble of results in the next section.

4 Results

The driver script driver_poisson2d.m developed
in the previous section computes the solution to the
model problem using the PARDISO linear solver
for Lagrange finite elements with all possible de-
grees p = 1, . . . , 5 and for several meshes, each
obtained by refining a coarse initial mesh r times
regularly. The script records the elapsed wall clock
time for each run as measure of performance. It
also obtains several pieces of information about
the mesh that characterize the complexity of the
FEM problem. Specifically, the number of mesh
elements Ne and the number of vertices Np in the
mesh are printed, and the number of degrees of
freedom DOF. The DOF is the number of un-
knowns that the linear solver has to obtain, and
this is the true indication of computational com-
plexity of each problem. For completeness, we also
compute the L2-norm of the FEM error between

4

FEM solution and the known true solution to con-
firm the correctness of the computed solution.

To study the performance as a function of the
number of computational threads, the script is run
for each possible value of threads on our cluster
node with two dual-core processors. For instance
in the case of 2 threads, we start COMSOL with
MATLAB from the Linux command-line by

comsol -np 2 matlab path

The quick help from comsol -h explains the
option -np as setting the “number of proces-
sors”. More precisely, the COMSOL Installa-
tion and Operations Guide explains the mean-
ing as shared-memory parallelism, which is most
precisely termed multi-threading on a node with
shared memory among the processors. See also
comsol -h matlab for more information on start-
ing COMSOL with MATLAB under Linux.

For consistency with the use of Matlab, we also
set its number of threads to the same number, in
this example to 2, by setting

>> maxNumCompThreads(2);

at the Matlab prompt. We note that Matlab is
merely used to interpret the command line and
that we only time the femstatic command in
COMSOL, hence this setting is likely not relevant.

The numerical tests are performed with 1, 2, 3,
and 4 threads in place of the 2 in the commands
quoted above. Table 1 lists the shared-memory
parallel performance results for each Lagrange fi-
nite element and for four refinement levels for each.
Notice that the refinement levels vary for different
Lagrange elements, such that the DOF are similar
in magnitude for each subtable. Lagrange finite el-
ements with higher degrees have more degrees of
freedom on each mesh element, thus their DOF are
higher. On the one hand, this leads them to run
out of memory on coarser meshes than Lagrange
elements with lower degrees, exactly corresponding
to the number of DOFs. We mention that the max-
imum observed memory usage was 14.5 GB for the
case p = 5 and r = 7. On the other hand, as the
printed errors readily show, higher degree elements
(for a PDE problem with a sufficiently smooth so-
lution) can give much smaller errors for equivalent
work; for instance, the DOF work associated with
p = 1 and r = 9 are identical to the ones with
p = 2 and r = 8, but the error is actually three

orders of magnitude better for a similar amount of
work.

However, the structure of the system matrix is
different for Lagrange elements with different de-
grees, even if the numbers of DOF are exactly the
same. More precisely, for higher degrees p one ex-
pects slightly less sparsity and a tighter clustering
of non-zero terms in the system matrix. On the one
hand, this makes the solution slightly more expen-
sive for higher degrees, as born out by the compar-
isons of the case p = 1 and r = 9 to the case p = 2
and r = 8, for instance. But on the other hand,
we might expect potentially better speedup when
going from 1 to 2 or more threads.

As it turns out, the results in Table 1 for our
tests using the PARDISO linear solver for this test
problem are more uniform, though. The elapsed
wall clock time increases with the degrees of free-
dom of the finite element method, with higher de-
gree Lagrange elements being slightly more expen-
sive, if the DOFs are equal. For the most compu-
tationally intensive refinement for each Lagrange
element, using 2 threads instead of 1 thread saves
about 25% of wall clock time, which is less than
the theoretically expected 50%. The improvement
resulting from using 3 or 4 threads is less signifi-
cant, which might be expected, as 3 or 4 threads
require the use of both dual-core processors on a
cluster node.

References

[1] Matthias K. Gobbert. A technique for the
quantitative assessment of the solution quality
on particular finite elements in COMSOL Mul-
tiphysics. In Vineet Dravid, editor, Proceed-
ings of the COMSOL Conference 2007, Boston,
MA, pages 267–272, 2007.

[2] Noemi Petra and Matthias K. Gobbert. Perfor-
mance studies with COMSOL Multiphysics via
scripting and batch processing. Technical Re-
port HPCF–2009–4, UMBC High Performance
Computing Facility, University of Maryland,
Baltimore County, 2009.

[3] Neeraj Sharma and Matthias K. Gobbert. Per-
formance studies for multithreading in Matlab
with usage instructions on hpc. Technical Re-
port HPCF–2009–1, UMBC High Performance
Computing Facility, University of Maryland,
Baltimore County, 2009.

5

Table 1: Elapsed wall clock times in seconds for the linear solver PARDISO using 1, 2, 3, 4 threads on
one cluster node. The mesh sizes correspond to the indicated refinement levels r.

r Ne Np DOF Er 1 thread 2 threads 3 threads 4 threads
6 106496 53633 53633 2.6324e-005 1.45 1.24 1.10 1.09
7 425984 213761 213761 6.5811e-006 6.54 5.34 4.89 4.64
8 1703936 853505 853505 1.6453e-006 32.29 26.16 23.25 21.81
9 6815744 3410945 3410945 4.1133e-007 171.85 126.20 112.25 102.08

(a) Lagrange elements with p = 1.

r Ne Np DOF Er 1 thread 2 threads 3 threads 4 threads
5 26624 13505 53633 2.8487e-007 1.53 1.36 1.31 1.21
6 106496 53633 213761 3.5635e-008 6.76 5.88 5.43 5.20
7 425984 213761 853505 4.4560e-009 33.79 27.46 25.39 24.23
8 1703936 853505 3410945 5.7108e-010 181.02 137.85 122.83 117.54

(b) Lagrange elements with p = 2.

r Ne Np DOF Er 1 thread 2 threads 3 threads 4 threads
5 26624 13505 120385 2.0616e-009 4.85 3.45 3.21 3.11
6 106496 53633 480385 1.2891e-010 20.81 16.27 14.80 13.86
7 425984 213761 1919233 3.1744e-011 95.44 73.54 66.77 63.78
8 1703936 853505 7672321 1.1865e-010 539.28 390.09 339.73 315.73

(c) Lagrange elements with p = 3.

r Ne Np DOF Er 1 thread 2 threads 3 threads 4 threads
4 6656 3425 53633 1.2633e-010 1.98 1.64 1.54 1.56
5 26624 13505 213761 3.9761e-012 8.63 7.07 6.41 6.25
6 106496 53633 853505 1.0879e-012 39.11 32.40 29.05 28.16
7 425984 213761 3410945 3.0417e-012 200.35 159.83 141.43 130.76

(d) Lagrange elements with p = 4.

r Ne Np DOF Er 1 thread 2 threads 3 threads 4 threads
4 6656 3425 83681 1.3803e-012 3.75 2.97 2.80 2.67
5 26624 13505 333761 1.1108e-012 15.21 12.61 11.66 11.01
6 106496 53633 1333121 5.1919e-012 73.40 57.05 50.41 48.72
7 425984 213761 5328641 1.9951e-011 362.94 263.55 241.03 219.44

(e) Lagrange elements with p = 5.

6

