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Abstract: Geothermally driven natural 
convection in enclosures is a ubiquitous process 
occurring in many physical environments such as 
caves, mines, etc.                                                                                                                                 
      We have numerically simulated laminar and 
turbulent natural convection in isolated air-filled 
cavities, buried in a more (in comparison to the 
air-filled cavity) conductive rock mass. To better 
understand the convective heat transfer process 
in isolated cavities, we varied the parameters of 
aspect ratio, slope, and the geometry of a cavity. 
To characterize the numerical results, we used 
metrics including Nusselt (Nu) vs. Rayleigh (Ra) 
number behavior as well as the number and 
pattern of convection cells. 
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1. Introduction 
 
      Natural convection is ubiquitous in various 
geophysical scenarios (e.g., air or water-filled 
fractures in rocks situated in geothermal zones, 
very deep mines, naturally occurring cavities, 
and in human-made excavations), especially 
those excavations and cavities in a geothermal 
resource area. Natural convection also has 
multitudinous applications; for example, natural 
cooling of electronic components in the Central 
Processing Unit of a computer system, cooling of 
a nuclear reactor, and the natural ventilation of 
environmental friendly, cost efficient homes. 
Given the ubiquity of the convection process, 
there is much literature regarding theoretical 
[15], experimental ([11], [9], [2], [16]) and 
numerical modeling work ([3], [5], [10]) on 
natural convection in enclosures.  A concise and 
current description of the theory as well as 
experimental and numerical work can be found 
in [4]. Alternatively, other researchers 
considered convection in saturated porous media; 
a review can be found in [17]. However, we are 
interested in air-filled enclosures only. In 

contrast to the voluminous amount of research 
on isolated enclosures with various combinations 
of boundary conditions (see [14] and [1]), there 
is very little research on air-filled enclosures 
buried in a more conductive rock mass. Some 
research on the subject is aimed to a very 
specific field, namely, cave micrometeorology 
[18]. 
      Our goal is to understand non-linear and 
coupled heat transport and fluid flow processes 
in enclosures completely buried in a more 
conductive rock mass, as compared to the air-
filled enclosure. We used a realistic value of 
geothermal heat flux at the rock mass bottom 
boundary. We consider the following cases: a 
cavity with various aspect ratios A (e.g., 0.5, 2, 
10, and infinity [see Figure 1a]), a cavity with 
various slopes from the horizontal line (see 
Figure 1b), and a cavity with various geometries 
(see Figure 2). 
      Section 2 briefly describes the use of the 
COMSOL Multiphysics software package, and 
the governing equations along with boundary 
conditions, section 3 describes results and 
discussion, and section 4 presents conclusions 
based on the presented results. 
 
2 Use of COMSOL Multiphysics and 
Governing Equations 
 
      Geothermally driven natural convection is 
caused by the strong coupling of the heat transfer 
processes and fluid flow. Heat transfer occurs 
throughout the rock mass (conduction only) and 
cavity (conduction and convection), while flow 
is restricted to the cavity. 
      We have modeled heat transfer using 
COMSOL's Convection and Conduction mode. 
We used the Navier-Stokes mode for momentum 
transport in the laminar flow simulations and the 
k-ω turbulence model in turbulent flow 
simulations.         
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      Note: For interpretation of various symbols 
used in this paper, please refer to Table 3 in the 
Appendix. 
 

 
 
Figure 1: (a) Schematic diagram for the cavity aspect 
ratio case (Note: For an infinitely wide cavity 
boundaries 5 and 7 extend to boundaries 2 and 4; 
distance between any cavity boundary to 
corresponding rock boundary is 5A); (b) Schematic 
diagram for the cavity slope case 
 

 
 

Figure 2: Schematic diagram for the cavity geometry 
case 
 
2.1 Governing Equations and Boundary 
Conditions 
 
           Fluid mechanists prefer to use governing 
equations in a non-dimensional form because it 
helps locate the essential parameters for coupled 
flow and heat transport problems, and it is easier 
to study the gradual impact of the driving 
mechanism or forcing on the flow and heat 
transport system. Consistent with these 
objectives, we have developed two sets of 
governing equations using two different sets of 
characteristic scales for length, fluid speed, and 
temperature.                                                                 
 
2.1.1 Model # 1: For Low Ra Convection 
 
      In this model, the following characteristic 
scales are used in non-dimensionalizing the 
governing equations for flow and heat transport: 

length scale H, velocity scale (λ /H), temperature 
scale T = (T1-T)/(T1-T2). 
 
Conservation of mass: 
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2.1.2 Model # 2: For high Ra convection 
 
      In this model, the following characteristic 
scales are used in non-dimensionalizing the 
governing equations for flow and heat transport: 
length scale H, velocity scale (λ/H)Ra0.5, 
temperature scale T= (T1-T)/(T1-T2). 
 
Conservation of mass:                                                                                                                                                                                          
                              0u =⋅∇ r                                 (8) 
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     Two separate models of governing equations 
are required. Model #1 is effective for laminar 
convection simulation in small enclosures and, 
as in comparison to model # 2, it is more 



intuitive. When Ra is 0, there is no forcing in the 
momentum balance equation, thus mimicking 
conductive heat transfer in a cavity. Whereas, 
when Ra is higher than some threshold, there is 
both conductive and convective heat transfer in a 
cavity. When the model # 1 is used for either 
laminar convection in enclosures with a high 
aspect ratio or for turbulent convection, the 
model yielded a convergence problem. Model #2 
is effective for this case and helps achieve a 
converged result. However, we cannot use model 
# 2 when Ra is 0, because the fluid viscosity 
term in the momentum balance equation in not 
defined for Ra equals to 0.         
      It is clear from these two models that in a 
non-dimensional form, there are only two 
independent parameters, Ra and Pr, and if 
geometry or the computational domain is also 
considered as an independent parameter, then 
there are three independent parameters, namely, 
Ra, Pr, and A. Additionally, we have employed 
Boussinesq approximation [7] in simplifying the 
governing equations. Refer to [6] for more 
details on the derivation of the governing 
equations in a non-dimensional form. 
 
2.1.3 Boundary conditions: 
 
       Table 1 shows boundary conditions used in 
simulation of laminar and turbulent natural 
convection. Additionally, for an infinitely wide 
cavity, periodic boundary condition for u, v, p, T 
are used. Figure 3 shows a typical mesh 
discretization used in the simulations. 
 
3. Results and Discussion                                 
         
Part 1: 
 
     The presence of a cavity affects the heat flux 
flow pattern in the surrounding rock mass. This 
effect is caused by the insulation effect of the air-
filled cavity. The effect is more pronounced as a 
cavity aspect ratio (A), which is defined as a 
cavity width to height ratio, increases. Wider air-
filled cavities (large A) have large insulation 
effects relative to smaller cavities (small A), 
because heat flux has to travel a longer distance 
and go around the cavity.  However, for a given 
aspect ratio, when buoyancy forcing, that is Ra is 
increased, more heat flux passes through the 
cavity. This is indicated by the reduction in the 
curvature of temperature contours around the 

cavity (see Figure 4 a, b, and c). When fluid flow 
behavior is turbulent in nature, temperature 
contours in the proximity of the cavity are almost 
horizontal (see Figure 4c), thus indicating heat 
flux will pass through the cavity rather than 
avoid it. 
       
Table (1): Boundary conditions used for laminar and 
turbulent natural convection simulations (Note: 
Boundary numbers refer to boundaries show in figure 
1a) 

 
 

 
 
Figure 3: A close-up view of a typical mesh 
discretization used in the simulations (Note: geometry 
in black shows an elliptical cavity) 
 

 
 
Figure 4: A close up view of the contour plot (in 
red) of temperature in the whole domain (rock 
and cavity) and streamline plot (in black) of 
velocity field in the cavity subdomain for cavity 
with as A=2, (a) only conductive heat transfer 
(Ra=0), (b) laminar convection (Ra=1E6), (c) 
turbulent convection (Ra=1E9) 
 
        Heat flux passing through an insolated and 
buried cavity is proportional to the cavity aspect 
ratio (A) and buoyancy forcing, while for an 
infinitely wide cavity (A is very large), heat flux 
only depends on buoyancy forcing.   For isolated 
and buried cavities, as a cavity aspect ratio is 
increased, there is more heat flux passing 
through it. This is shown in Figure 5.  
      Figure 5 compares the behavior for isolated 
and buried cavities with Nu vs Ra. Nu is a ratio 
of total heat flux passing through any two cavity  



 
Figure 5: Comparison of Nu vs Ra behavior for 
isolated and buried cavities (numbers on the plot show 
number of convection cells at a particular Ra) 
     

 
Figure 6: Comparison of Nu vs Ra behavior between 
isolated and buried cavity with A=10 and infinite 
cavity aspect ratio (numbers on the plot show number 
of convection cells at a particular Ra) 
 
boundaries (one vertical and one horizontal) 
when there is conductive and convective heat 
transfer to heat flux passing  through the same 
boundaries but when there is only conductive 
heat transfer.   
      Ra is a measure of buoyancy forcing Figure 6 
compares Nu vs Ra behavior between an isolated 
cavity with A=10 and a cavity with an infinite 
aspect ratio. There is much more heat flux 
passing through an infinitely wide cavity with 
respect to an isolated and buried cavity because 
in the former case heat flux has no choice but to 
pass through the cavity, while in the latter case 
heat flux can by-pass the cavity and go around it. 
      Laminar and turbulent convection 
simulations show heat flux values, measured in 
terms of Nu, which are very close for an 
intermediate range of Ra (see Figure 5). This is 
because, for an intermediate range of Ra 
production of turbulent kinetic energy is very 
low and the specific dissipation rate of the 
turbulent kinetic energy is very high.     

      As cavity aspect ratio increases, the value of 
critical Ra (Ra at which convection starts) 
decreases. This inverse relationship is caused by 
“the rigid boundary effect” of the fixed side 
boundaries of the cavity. In cavities with a small 
aspect ratio, the fixed side boundaries have a 
stabilizing effect on the pattern of fluid flow by 
restricting convection motion.     
     The pattern of convection cells depends on 
both cavity aspect ratio and buoyancy forcing. 
For a cavity with A=10, we observed a single 
row of cells at an intermediate range of Ra (1E4 
to 1E6) and when buoyancy forcing is increased 
in the cavity, convection cells become almost 
square. For cavities with A equals to either 0.5 or 
2, we observed stacked cell formation (see 
Figure 4b) at an intermediate range of Ra (means 
laminar fluid flow), and some corner cells along 
with large cells, at the cavity center, for high 
Ra’s (means turbulent fluid flow). Also, as the 
buoyancy forcing is increased in a cavity with a 
fixed aspect ratio the mean fluid speed also 
increases.                                                                 
 
Part 2:         
 
         Cavity slope affects the heat flux flow 
pattern in the surrounding rock mass in the 
proximity of the cavity, by encouraging heat flux 
to pass through the cavity rather than avoid it. 
This heat flux flow behavior is similar to the 
behavior reported for the cavity aspect ratio case.             
      For a sloping cavity and for a fixed cavity 
aspect ratio (A) and for a fixed applied heat flux 
(q), Ra exponentially increases with the effective 
length scale Hcos(θ)+Lsin(θ), where H, θ, and L 
are the cavity height, the cavity slope from a 
horizontal line, and the cavity length, 
respectively. Note: H is the effective length scale 
for a horizontal cavity. For example, for a fixed q 
and A, if Ra is 1E5 for a horizontal cavity (θ=0o), 
corresponding Ra for a sloping cavity with θ=30o 
is 2.54E9.     
     Convective heat transport is a preferred 
mechanism of heat transport in a sloping cavity. 
Figure 7 shows Nu vs Ra behavior for sloping 
cavities at a fixed Ra.  In Figure (7), we have 
fixed Ra at 1E5 for laminar and at 1E7 for 
turbulent convection with varied cavity slopes 
indicating that simulated heat flux is lower for 
steeper cavity slopes. We tried to simulate 
laminar convection in a sloping cavity with a 
fixed q and a variable Ra using the model # 2 in 



section # 2, which is good for higher Ra 
convection however, simulations yielded a 
convergence problem. 
      The pattern and number of cells in a sloping 
cavity are very sensitive to the cavity slope. The 
obtained Nu data for various cavity slopes 
indicates that a lesser number of convection cells 
encourage more convective heat transport with 
respect to conductive heat transport. Figure 7 
shows the number of cells observed for each 
cavity slope with laminar and with turbulent 
convection at a fixed Ra. There exists a transition 
angle for laminar convection (between 53.75o 
and 55o cavity slope) for the laminar convection 
(at Ra=1E5), after which the pattern of cells does 
not change any further (see Figure 8 a, b). In 
contrast to this, for turbulent convection, for the 
converged simulations, we have not observed an 
angle with transition characteristics as high as 
60o. 
 
Part 3: 
 
      Simulation results do not show any 
significant effects of a cavity shape on heat flow 
patterns in the surrounding rock mass in the 
proximity of a cavity with a fixed buoyancy 
forcing. Temperature contours in the proximity 
of the cavity have a similar pattern for all cavity 
shapes at a fixed Ra.     
      Large size cavities have more heat flux 
passing through them than small size cavities. 
This finding is consistent with the findings for 
heat flux flow pattern for a cavity aspect ratio 
case with an exception for a keyhole shaped 
cavity, shown in Table 2, case number 3.  In the 
latter case, we found the Nu value nearly equal 
to the corresponding value for large cavities. 
Table 2 shows Nu for each of the six cavity 
geometries shown in Figure 2. We found an 
anomalous behavior for a circular shaped cavity, 
because Nu is very close to 1 for such a very 
high value of Ra (1E6) and has multiple 
convection cells arranged in a seemingly random 
order.  
      Cavity shape substantially affects shape and 
pattern of cells in a cavity. We have observed a 
single row of cells for the following cavity 
shapes: the rectangular cavity, the rectangular 
cavity with rounded corners, and the elliptical 
cavity [see Figure 9b for streamline pattern in an 
elliptical shaped cavity], while cavities with the 
following shape: the circle, square, and keyhole, 

all favor stacked cell formation [see Figure 9a 
for streamline pattern in a keyhole shaped 
cavity]. In addition to this, elliptical cavity 
shows a maximum number of cells (see Figure 
9b) as in comparison to all six members of its 
group. 
 

 
 
Figure 7: Variation of Nu wrt cavity slope at Ra=1E5 
for laminar flow and at Ra=1E7 for turbulent flow 
(numbers on the plot show number of convection cells 
at a particular Ra) 
 

 
 

Figure 8: Surface plot of temperature and streamline 
plot of velocity field in a cavity with the slope of 
53.75o (a) and with the slope of 55o (b) with a laminar 
fluid flow at Ra=1E5 
 
Table 2: Comparison of Nu for cavities with various 
shapes with a laminar flow assumption at Ra=1E6   
       

 
 

 
 
Figure 9: Streamline plot of velocity field for a 
keyhole shaped cavity (a) and for an elliptical shaped 
cavity (b) at Ra=1E6 with laminar flow assumption 



 
The patter of cells in a keyhole shaped cavity is 
very different from the pattern showed by 
circular and square shaped cavity, which have a 
same aspect ratio as a keyhole shaped cavity. 
Thus, pattern of cells in a cavity is highly 
dependent on the relative closeness of the side 
boundaries (or cavity aspect ratio) and cavity 
shape.     
 
4. Conclusions 
 
            In this work, we have numerically 
simulated laminar and turbulent natural 
convection in isolated and buried enclosures 
surrounded by a more conductive rock mass, as 
compared to an air-filled enclosure. Presence of 
a cavity affects pattern of the heat flux flow in 
the surrounding rock mass when there is only 
conductive heat flow in the surrounding rock 
mass and in the cavity. The heat flux generally 
avoids the cavity under this condition, which is 
caused by the insulation effect of the air-filled 
cavity. However, when buoyancy forcing in the 
cavity is increased, the insulation effect of an air-
filled cavity decreases. This is because 
vigorously circulating air is more capable of 
transporting heat than stagnant air in a cavity. 
Critical Ra, at which convection onsets, has an 
inverse relationship with a cavity aspect ratio. 
Cavities with a small aspect ratio need more 
destabilizing forcing to onset convection, 
whereas, cavities with a large aspect ratio need 
relatively small destabilizing forcing for 
convection to start. Also, cavities with larger 
aspect ratios have more heat flux passing through 
them (larger Nu) as compared to cavities with 
smaller aspect ratios.  Cavity aspect ratio along 
with buoyancy forcing plays an important role in 
governing number and pattern of convection 
cells in a cavity. Cavities with smaller aspect 
ratios prefer stacked cell formation for low to 
high Ra convection. Also, there are relatively 
small cells at the cavity corners for high Ra 
convection. Mean fluid speed increases and 
mean fluid temperature decreases in the cavity 
when buoyancy forcing is increased because 
high speed circulating fluid redistributes heat 
more efficiently.                                                                 
     Cavity slope has qualitatively similar effects 
on the heat flux pattern in the surrounding rock 
mass, in the proximity of a cavity, as a cavity 

aspect ratio has when buoyancy forcing is high. 
For a sloping cavity, convection heat transport is 
the preferred method for heat redistribution 
because Nu is large enough for a sloping cavity 
as in comparison to a horizontal cavity. In 
addition, there exists a transition angle for 
laminar convection after which the number of 
cells does not change any further in the cavity. 
However, based on numerical data, there is no 
such transition angle after which number of cells 
in the cavity does not change for turbulent flow 
convection at least up to 60o cavity slope. 
     Based on the numerical data, cavity shape has 
no effect on heat flux pattern in the surrounding 
rock mass at a fixed buoyancy forcing. Cavity 
size and shape affect the pattern of cells. While 
circular, square, and keyhole shaped cavities 
(with A equals to 1) prefer stacked cell 
formation, cavities with a large (A=10)  
rectangular shape, rectangular with rounded 
corners, or elliptical shape prefer a single row of 
cells, the later resulting in a more efficient heat 
transport system. Convection cells, almost as if 
they were intelligent creatures, respond to cavity 
shape stimuli by arranging themselves in such a 
manner, which optimizes heat transfer for that 
cavity shape. 
     All the turbulent convection simulations 
reported in this paper is with high value of 
(isotropic) artificial diffusion, which is essential 
given the fact that our numerical formulation 
favors more convective fluxes of heat and 
momentum than diffusive fluxes of the same 
quantities.  This is in addition to the fact that 
Galerkin Finite Element Method (used by 
COMSOL) is unstable for convection dominated 
problems ([8], [12]). Utilization of high artificial 
diffusion has subdued mean fluid speed and Nu 
for high Ra convection in a cavity. However, 
every attempt has been made to reduce the value 
of the tuning parameter for (isotropic) artificial 
diffusion parameter to as low a value as possible 
while still getting a converged simulation. 
      In the last, COMSOL Multiphysics software 
package is a useful numerical experimenting tool 
to understand convective flow and heat transport 
processes in enclosed environments. This 
statement is in the light of the fact that field 
experimentation technique for this purpose is 
very expansive and can not provide the in-depth 
behavior of various flow and heat transport 
parameters as numerical methods do.  
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