Simulating Superconductors in AC Environment: Two Complementary COMSOL Models

Roberto Brambilla ${ }^{1}$ and Francesco Grilli ${ }^{2}$

${ }^{1}$ ENEA - Ricerca sul Sistema Elettrico S.p.A., Milano, Italy
2 Karlsruhe Institute of Technology, Karlsruhe, Germany
francesco.grilli@kit.edu
October 16, 2009

Outline

- Motivation
- Finite-element models
- 2-D \& 1-D, two different approaches
- Governing equations
- Pros \& Cons
- Examples
- Conclusion

Motivation

- High-temperature superconductors (HTS) very promising for power applications
- AC losses still too high
- Necessary to investigate loss dynamics
- What type of models?

Finite-element models: 2-D model

- Some simplifications can be made
- 2-D model enough in most cases
- Maxwell equations + non-linear resistivity
- $\rho(J)=\frac{E_{c}}{J_{c}}\left|\frac{J}{J_{c}}\right|^{n-1}$
- Implemented in COMSOL's PDE General Form
- Magnetic field components as state variables
- Edge elements guarantee continuity of tangential field component across adjacent elements

Example of mesh and results in 2-D

Limitations of 2-D model

- Second-generation HTS tapes
- 4-10 mm wide, $1 \mu \mathrm{~m}$ thick
- Huge increase of DOFs
- Tapes modeled as 1-D objects
- Solve integral equation for J

$$
\rho J(x, t)=\mu d\left[\frac{1}{2 \pi} \int_{-a}^{a} \dot{J}(\xi, t) \log |x-\xi| \mathrm{d} \xi+\int_{-a}^{x} \dot{H}_{e y}(\xi, t) \mathrm{d} \xi\right]+C(t)
$$

YBCO coated conductor tapes and devices

YBCO coated conductor tapes and devices

Use of COMSOL features in the 1-D model

- $\rho J(x, t)=$

$$
\mu d\left[\frac{1}{2 \pi} \int_{-a}^{a} \dot{J}(\xi, t) \log |x-\xi| \mathrm{d} \xi+\int_{-a}^{x} \dot{H}_{e y}(\xi, t) \mathrm{d} \xi\right]+C(t)
$$

- Use of integral constraints to impose the total current

$$
\int_{-a}^{a} J(x, t) \mathrm{d} x=I(t)
$$

- Integrals transformed into Boundary Integral Coupling Variables (BICV) by using COMSOL's operator dest ()
- Examples:

$$
\begin{aligned}
& \text { - } f(x)=\int_{a}^{b} K(x, y) \mathrm{d} y \Rightarrow \mathrm{~K}(\operatorname{dest}(\mathrm{x}), \mathrm{x}) \\
& \text { - } f(x)=\int_{a}^{x} g(y) \mathrm{d} y \Rightarrow \mathrm{~g}(\mathrm{x}) *(\mathrm{x}<\operatorname{dest}(\mathrm{x}))
\end{aligned}
$$

Examples of use of the 1-D model

1-D model for interacting tapes

- Useful for tape assemblies, such as cables, coils
- Magnetic field produced by one tape becomes 'source' for the others
- Electromagnetic interaction mediated by 2-D magnetostatic models

Test against experiments

Two anti-parallel tapes with misalignment

1-D model for interacting tapes

- Main drawback: one magnetostatic model for each interaction
- Include interaction directly in the integral equations
- Feasible only for certain geometries

Integral equations for interacting tapes

- z-stack

$$
\rho J(x, t)=\frac{\mu d}{2 \pi} \int_{-a}^{a} \dot{J}(\xi, t) \log \sinh \frac{\pi|x-\xi|}{S} \mathrm{~d} \xi+C(t)
$$

- bifilar z-stack

$$
\rho J(x, t)=\frac{\mu d}{2 \pi} \int_{-a}^{a} \dot{J}(\xi, t) \log \tanh \frac{\pi|x-\xi|}{2 S} \mathrm{~d} \xi+C(t)
$$

- x-array $\rho J(x, t)=\frac{\mu d}{2 \pi} \int_{-a}^{a} J(\xi, t) \log \sin \frac{\pi|x-\xi|}{L} \mathrm{~d} \xi+C(t)=$ $\mu d K_{X}(x, t)+C(t)$
- 2-layer x-array

$$
\begin{aligned}
& \rho J(x, t)=\mu d\left[K_{X}(x, t) \pm K_{2 P}(x, t)\right]+C(t) \\
& K_{2 P}(x)=\frac{1}{4 \pi} \int_{-a}^{a} j(\xi) \log [\cosh (2 \pi S / L)-\cos (2 \pi(x-\xi) / L)] d \xi
\end{aligned}
$$

Examples

Computing the magnetic field in the 1-D model

- Very simple in 2-D, B available from state variable H
- Not immediate in 1-D, B needs to be calculated from J
- $B_{y}(x)=\frac{\mu_{0}}{2 \pi} \int_{-a}^{a} \frac{J(\xi)}{\xi-x} \mathrm{~d} \xi$
- Must be computed as Cauchy Principal Value (CPV), due to singularity in $\xi=x$
- Lacking feature, look for alternative method
- $B_{y}(x)=\Re\left[\frac{\mu_{0}}{2 \pi} \int_{-a}^{a} \frac{J(\xi)}{\xi-x+i \epsilon} \mathrm{~d} \xi\right]$
- Not mathematically rigorous, but ok for our purpose
- Useful for models with $J_{c}(B)$

Computing the magnetic field in the 1-D model

Conclusion

- Two complementary models for calculation of field/current distributions and ac losses
- Utilized for superconductors but useful for conductors of arbitrary resistivity
- 2-D model very flexible, but not practical for thin conductors
- 1-D model very fast, ideal for design optimization
- Both exploit COMSOL features:
- Edge elements in 2-D
- Integral equations in 1-D
- Both utilized for simulating configurations of practical interest, see bibliography in the conference paper

