

Comsol Multiphysics[®], Milan, Italy, Oct 14-16 2009

Study of an Electroacoustic Absorber

Anne-Sophie Moreau, Hervé Lissek and Romain Boulandet Ecole Polytechnique Fédérale de Lausanne, Switzerland

Introduction

Laboratory of Electromagnetism and Acoustics

Layout of the presentation

- System dynamics modeling
 - Electroacoustic absorber dynamics
 - Acoustic waveguide
- Numerical model
 - Loudspeaker structural properties
 - Acoustic performances assessment
- Results
 - Loudspeaker characteristics
 - Acoustic performances
- Conclusion

stem dynamics modeling

System dynamics modeling

Numerical model

Z,

Zm

impedance

 Z_{ar}

Results

Electroacoustic absorber dynamics

Electrical part

- $R_{\rho}(\Omega)$, electrical resistance
- L_e(H), electrical inductance blocked electrical impedance
- Mechanical part
 - *R_{ms}* (N.s.m⁻¹), mechanical resistance
 - M_{ms} (kg), moving mass
 - free mechanical C_{ms} (m.N⁻¹), mechanical compliance
- Acoustic part
 - *M_{ar}* (kg.m⁻⁴), acoustic mass of radiation
 - acoustic impedance • $R_{ar}(\Omega.m^{-4})$, acoustic resistance
- + Closed-box environment Z_{ab} rear acoustic impedance
- + Shunt resistance Z_{sh} shunt electrical impedance
- Coupling factors
 - S_d (m²), diaphragm area
 - Bl (N.A⁻¹), force factor

Absorber characteristic equations

$$\begin{cases} (Bl)\underline{l} - S_d \underline{p} = (\underline{Z}_m + S_d^2 \underline{Z}_{ab})\underline{v} \\ o = \underline{Z}_e \underline{l} + (Bl)\underline{v} + \underline{Z}_{sh} \underline{l} \end{cases}$$

	•	1 1.
Svstem d	vnamics moa	eina
by seem a	ynannes moa	Curry

Results

Acoustic waveguide

- Hypothesis :
 - Plane wave if f < 1326 Hz</p>
 - Negligible attenuation because α = 0.0075 at 400 Hz

(ISO 10534-2 standard)

System dynamics modeling

Numerical model

Results

Loudspeaker structural properties

Results

Acoustic performances assessment

Electroacoustic absorber

 $\begin{cases} I = \frac{V_{sh} - Blv}{Z_e} \\ V_{sh} = \frac{R_{sh}}{R_{sh} + Z_e} Blv \end{cases}$

Source of pressure

 $p_L = i Pa$

- Impedance tube and closed-box
 - Sound hard walls
 - Filled with air ($\rho_o = 1.25 \text{ kg.m}^3$ and $c_o = 343 \text{ m.s}^{-1}$)

 ISO 10534-2 standard : Pressure of microphones 1 and 2

Results

System dynamics modeling

Numerical model

Results

Loudspeaker characteristics

- Electrical impedance |Z_{hp}|
 - From Comsol Multiphysics[®]

Constructor data sheet

Thiele and Small parameters

Symbol	Data sheet	Model	Error (%)
a (cm)	7.4	7.5	1
S _d (cm²)	133	137	3
<i>Bl</i> (Tm)	6.9	6.7	3
$f_s(Hz)$	38	37	3
<i>R_e</i> (W)	5.6	5.6	0
<i>L_e</i> (mH)	0.9	3.2	72
R _{ms} (Ns.m⁻¹)	0.8	0.78	3
M _{ms} (kg)	13	12.1	7
<i>C_{ms}</i> (mm.N ⁻¹)	1.35	1.4	4
<i>V_{as}</i> (L)	34	39	13
O _{ms}	3.88	3.9	1
Q _{es}	0.43	0.38	13
O _{ts}	0.39	0.35	11

Svstem	dvnamics	modeling	1

Results

Acoustic performances (Measurement vs. Comsol)

Conclusion

- Enhancement prospect
 - Fittings of some parameters Cancelation of the shift in frequency
 - Optimization of the parameterization of the software
 - Perfectly Matched Layers
 Improvement of the calculation time
 - Mesh

Good agreement between numerical results and experiments

- Validation of the finite element model
- Use for improving the design of electroacoustic absorber

Thank you for your attention

Corresponding author : herve.lissek@epfl.ch