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Abstract: We study the gravity-driven film flow 
of a Newtonian liquid down an inclined plane. 
Many applications such as heat- and mass 
exchangers and evaporators or film coaters 
require undulated or rippled bottom 
topographies. In these cases, the interplay of 
gravity, surface tension and inertia leads to a 
response of the interface which furthermore 
strongly depends on the shape of the bottom 
topography. Instead of determining the free 
surface position as in the case of the direct 
problem, we prescribe a free surface shape and 
seek the corresponding bottom topography. 
Furthermore, we consider the stability of the 
system and derive conditions for the onset of 
instabilities at the free surface in form of surface 
waves.  
 
Keywords: thin films, free surface flow, bottom 
topography, inverse problem. 
 
1. Introduction 
 

Gravity-driven film flow over topography is 
a fundamental problem in fluid mechanics. The 
basic problem of the steady flow over a flat 
incline has even an analytical solution found by 
Nusselt in 1916 [1]. A great variety of 
applications in many kinds of industrial and 
natural systems deals with inclines which are 
undulated. Experimental investigations show that 
the flow over a wavy configuration exhibits new 
phenomena such as surface rollers, standing 
waves or hydraulic jumps in form of steep 
shocks at the free surface [2] which cannot be 
found in the flow over flat inclines. Further 
effects which can be observed deal with 
modifications in the flow field like the formation 
of eddies [3]. 

 
A lot of theoretical, numerical and 

experimental results have been published in the 
last years dealing with the forward problem of 
finding the unknown free surface for a given 
bottom topography. The related inverse problem 
which consists in finding a topography that 
causes a target free surface is a relatively new 

field in research. A first approach was presented 
by Gramlich et al. [4] who controlled the 
capillary ridge in the flow over a trench by 
applying a heat source. Scholle et al. [5] 
improved the drag by modifying the topography. 
Sellier [6] solved the inverse problem by 
prescribing a free surface and solving for the 
topography in the lubrication limit. He refers to 
two main applications. The first one deals with 
coating defects which could be removed by 
controlling the free surface shape. The second 
one comes from an experimentalist’s point of 
view: in the case when the flow of an opaque 
liquid over an unknown topography is 
considered, the inverse problem allows to find 
easily the bottom topography by measuring the 
free surface shape.  

 
Sellier [6] treated the inverse problem in the 

lubrication approximation which is restricted to 
very small Reynolds numbers. In the following 
we present a weighted-residual integral 
boundary-layer approach which is valid for up to 
moderate Reynolds numbers. As a test case we 
consider the configuration of a wavy free surface 
and solve for the corresponding bottom 
topography. 

 The outline is as follows. We first present 
the modeling and the governing equations. The 
governing equations are then solved numerically. 
To test the method we also apply an analytical 
approximation and compare the results. Finally, 
we study the linear stability of the steady 
solution computed before by solving a 
corresponding eigenvalue problem. 
 
2. Modeling 
 

We study an incompressible viscous liquid 
flowing down a substrate inclined at an angleα . 
The free surface is given by the function  

 ( ) ( )sin 2 /h x d a x Lπ= + , (1) 

where d is the mean film thickness, a the 
amplitude of the free surface undulation, L its 
wavelength and x the spatial coordinate in 
downstream direction. A sketch of the problem 
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setup is shown in Figure 1. The corresponding 
unknown bottom topography reads ( )b x  and the 

film thickness can be computed with the relation 
f h b= − . 

 
Figure 1. Sketch of the problem [7].  
 

The flow is then completely described by the 
Navier-Stokes equation and the continuity 
equation. At the boundaries we have the no-slip 
and no-penetration condition at the bottom and 
the dynamic and kinematic boundary condition 
at the free surface. 

 
In what follows we assume a thin film 

approximation which claims that 2 1δ ≪ , where 
2 /d Lδ π=  is the thin-film parameter. Writing 

the governing equations in dimensionless form 
and applying the weighted-residual integral 
boundary-layer method we arrive at the two 
evolution equations for f and q 
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where q is the local flow rate in a cross section. 
All variables denote dimensionless quantities. 
Details of the derivation can be found in  [7]. The 
model (2), (3) will be referred to as the 
weighted-residual integral boundary-layer 
(WRIBL) in the following. The dimensionless 
free surface contour reads 

 ( ) 1 sinh x A x= + , (4) 

where A measures the amplitude of the free 
surface. We summarize all dimensionless 
parameters in Table 1. 

Table 1: Dimensionless numbers 
 

notation definition 
physical 

interpretation 

Re Reynolds number inertia 
1Bo−  inverse Bond 

number 
surface 
tension 

cotα  cotangens of 
inclination angle 

hydrostatic 
pressure 

δ  film thickness 
parameter 

 

A  waviness of the 
free surface 

 

 
We note that (2) and (3) are integral 

formulations of the mass balance and the 
momentum balance, respectively. We identify 
the following terms in (3): The first term in 
brackets comes from the convective terms in the 
Navier-Stokes equation and is responsible for the 
influence of inertia. The second term comes from 
the influence of gravity and wall shear stress and 
the third term is due to surface tension and 
hydrostatic pressure. Equations (2) and (3) are 
the starting point of the following investigations. 
 
3. Numerical solution of the steady 
problem 
 

We first focus on the steady problem. In the 
steady case (2) and (3) reduce to a single 
ordinary differential equation for f 
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We implement (5) in COMSOL by rewriting 
(5) into a first order differential equation and 
applying the PDE mode. Eq. (5) is then solved 
over one period of the free surface hence 

[0, 2 ]x π∈ . We furthermore apply periodic 

boundary conditions which excludes in- and 
outflow effects. We note that solving for f then 
leads the unknown bottom topography by the 
relation b h f= − . 

 



A typical solution for the problem is shown 
in Figure 2 where we plot the given free surface 
shape and the numerical solution of the bottom 
topography. 
 

Figure 2 reveals that the topography needs to 
contain steep troughs in order to keep the free 
surface at this undulated shape. For very small 
free surface undulations we expect that the 
solution for the bottom topography tends to the 
flat bottom in the limit case. Higher amplitudes 
lead to stronger deflections in the topography. 
Figure 3 shows a study for increasing free 
surface amplitude A.  

The previous images motivate us to consider 
the Fourier decomposition of the bottom as a 
measure for its nonlinearity. From Figure 3 we 
conclude that the first Fourier mode, which 
corresponds to the same wavelength as the free 
surface, is dominating when A is sufficiently 
small. Increasing the free surface amplitude leads 
to a generation of higher harmonics. This 
behavior is further investigated in Figure 4 where 
we display the first three harmonics of the 

bottom contour. We observe that the first 
harmonic in fact dominates the others, however, 
for higher A the topography becomes more and 
more nonlinear when higher harmonics come 
into play. At 0.95A≈ , which corresponds to the 
case in Figure 2, we find that higher harmonics 
increase considerably. 
  
4. Validation of the numerical results 

 
The WRIBL-model developed in the second 

section allows for the description of inertial 
flows up to moderate Reynolds numbers. Sellier 
[6] studied a similar problem in the lubrication 
limit and even found an analytical solution. We 
now validate our results with the results in the 
literature. Instead of a periodic free surface we 
prescribe a step down/step up and a double bell 
free surface shape. The results are shown in 
Figure 5. We observe a perfect agreement of the 
two solutions. It can be concluded that the model 
predicts the right behavior in the validity domain 
of Sellier’s approach. 

 
We finally test the finite element solution by 

comparing the numerical results with an 
analytical approximation. We therefore assume 
in (5) that the free surface 1 sinh A x= + has only 
a very weak undulation or equivalently 1A≪ . 
This allows us to treat A as a perturbation 
parameter and we can expand the unknown film 
thickness in a perturbation series which reads 

11f Af= + . Substituting this ansatz into (5) leads 

to a linear ordinary differential equation for f1 
which can be solved easily.  
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Figure 2. Free surface and bottom contour. The 
parameters are A=0.95, Re=90, Bo-1=20, cotα=1, 
δ=0.2,  [7]. 
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Figure 4. Fourier decomposition of the bottom 
topography. The parameters are A=0.95, Re=90, 
Bo-1=20, cotα=1, δ=0.2, [7]. 
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Figure 3. Shape of the bottom topography for 
changing free surface amplitudes. The parameters are 
Re=20, Bo-1=20, cotα=1, δ=0.2, [7]. 
 



Assuming periodic boundary conditions, we 
arrive at the solution 1 1 1sin cosf S x C x= +  with 

two constants 1S  and 1C . 

 As a measure for the bottom topography we 
take again the Fourier decomposition and 
compare the analytical and the numerical results 
for increasing A. Results of the comparison are 
presented in Figure 6. We study the amplitudes 
vs. the Reynolds number and the free surface 
amplitude. Obviously, the agreement for very 
small A is perfect for all Reynolds numbers. 
Increasing A further the agreement is still 
reasonable for intermediate to larger Reynolds 
numbers. 

 We remark that the bottom amplitude shows 
a local maximum at a certain Reynolds number. 
A similar effect has been observed for the 
corresponding forward problem where the free 
surface amplitude shows a maximum . 

 

 
4. Linear stabiliy analysis 
 

In the previous sections we computed steady 
solutions for the problem (2) and (3). At first 
glance unsteady solutions are not reasonable 
since the bottom topography is a solid wall. 
However, the unsteady problem arises in a 
different context when considering the problem 
as a new direct problem where the free surface is 
unknown. The approach is the following: First 
we prescribe a free surface and seek the 
corresponding bottom topography. In a second 
step we consider the forward problem for this 
bottom topography. In this forward problem the 
steady solution coincides with the steady free 
surface, nevertheless, the unsteady solution 
shows a different behavior. Unsteady 
fluctuations in the form of surface waves are 
possible. 

As a first step to such an unstable 
configuration we consider the linear stability. 
That means we prescribe a free surface, compute 
the topography and find conditions which 
guarantee stable or unstable free surfaces. 

 
We first linearize  (2) and (3) around the 

steady solution and substitute ( )1 ,q q x tε= + ɶ  

and ( ) ( ),Sf f x f x tε= + ɶ  with ε  small. This 

yields a linear PDE for ,q fɶɶ . We prescribe the 
perturbations as normal modes and make an 
ansatz  

 ( ) ( ) ( ) ( )ˆ ,
i kx t i kx t

f f x e q q x e
ω ω− −= =ɶ ɶ ɶ . (6) 
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a) Step down and step up free surface profile. 
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Figure 5. Comparison of the analytical solution of 
Sellier [6] and the numerical solution within the 
WRIBL framework. The parameters for the WRIBL 
approach are Re=0.1, Bo-1=30, cotα=0, δ=0.1, [7]. 
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Figure 6. Comparison of the bottom amplitude from 
the analytic perturbation approximation and the 
numerical solution. The solid line denotes the analytic 
solution for 1A≪ . Lines with symbols indicate 
numeric solutions. The fixed parameters are Bo-1=10, 
cotα=1, δ=0.2, [7]. 

 



Finally, we obtain a linear eigenvalue problem 
with eigenvalue ω  and spatial wavenumber k 
which is solved numerically using COMSOL. 
The sign of the imaginary part of ω  gives 
information about the stability. If ( )Im 0ω >  then 

the free surface is unstable, otherwise it is stable. 
The numerical solution allows us to determine a 
stability chart. We expect that for 0A=  the 
system corresponds to the flow over a flat 
bottom where the critical Reynolds number reads 
Re 5/6cotcrit α= . Figure 7 shows the critical 

Reynolds number for different inverse Bond 
numbers and increasing free surface amplitude. 
We find that in most cases the free surface 
topography leads to an increase in the critical 
Reynolds number which corresponds to a 
stabilization of the system. However, for higher 
inverse Bond numbers the effect changes and the 
critical Reynolds number decreases. 

 
7. Conclusions 
 

We study the film flow of a viscous liquid 
flowing down an incline. Instead of the widely 
studied direct problem of finding the unknown 
free surface we focus on the corresponding 
inverse problem. We therefore prescribe a free 
surface shape and seek the bottom topography. 
Starting from a weighted-residual integral 
boundary-layer model we solve for the steady 
bottom topography using finite elements. We 
reveal that wavy free surfaces require strongly 

undulated topographies with steep troughs. 
Parametric studies show that this effect increases 
with increasing free surface amplitude.  

 
In order to validate our model and the 

numerical method we compare our results to 
analytical results in the literature based on the 
lubrication approximation. Another comparison 
is provided by an analytical perturbation 
approximation for small free surface amplitudes. 
Both comparisons show that the WRIBL model 
delivers reasonable results up to moderate 
Reynolds numbers. 

 
Finally, we study the stability of the steady 

solution. We conclude that the free surface 
undulation provides a mechanism to stabilize the 
free surface. However, for larger surface tension, 
this effect is decreased and the critical Reynolds 
number decreases. 
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Figure 7. Critical Reynolds number vs. free surface 
amplitude and different inverse Bond numbers for the 
case cotα=1, δ=0.2. The dashed domain indicates the 
critical Reynolds number for the flat bottom 
Re 5/6cot 0.833crit = α≈ , [7]. 




