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Introduction 

 
Nucleation of clusters of a stable phase from a 

metastable phase is the initial stage of numerous 

phase transformations. Nucleation is often modeled 

by classical nucleation theory (CNT), but CNT is 

only applicable when growth of nucleating clusters is 

collision (or interface) limited. Therefore, CNT has 

recently been adapted by Slezov for growth limited 

by long-range diffusion of molecules to clusters in 

non-polymorphic transformations [1]. Slezov's model 

describes, e.g., precipitation of oxygen in silicon, 

and, more generally, crystallization in alloys.  

 

However, Slezov’s model is applicable only in 3D 

due to its reliance on quasi-steady-state growth, 

which does not occur in lower dimensions. 

Generalizing the model requires using the general 

relationship between growth rate and cluster size in 

place of the quasi-static one, but is difficult because 

the former has no analytic solution. Exact solutions 

are available only for fixed concentration of the 

source phase at the cluster surface [2]. However, this 

situation does not arise in real systems. Instead, the 

surface concentration varies with the cluster’s size 

through the Gibbs-Thomson capillarity effect [3]. In 

this case, growth rates can only be computed 

numerically. We therefore obtain diffusion-controlled 

growth rates with the COMSOL Multiphysics® 

simulation software. Such growth rates will be used 

to extend Slezov’s model to 2D. 

  

Scope 
 

For simplicity, we model spherically symmetric 

growth, which occurs in isotropic systems, limited by 

Fickian diffusion with homogeneous diffusivity. To 

focus on filling the gap in Slezov’s model, we 

modeled capillarity effects in 2D only.  

 

In our model, the concentration of the stable phase 

𝑐𝑠𝑡𝑎𝑏𝑙𝑒is larger than the bulk concentration of the 

metastable phase 𝑐∞. Then, cluster growth requires 

depletion of the parent phase. 

 

We further require that only a small fraction of space 

is transformed from one phase to another, e.g., in 

dilute systems with 𝑐𝑠𝑡𝑎𝑏𝑙𝑒 ≫ 𝑐∞ or in the early 

stages of phase transformations. In such a scenario, 

most clusters are far enough from one another that 

depletion or enrichment of the original phase by one 

cluster does not affect the concentration near another. 

Then, a cluster’s growth is independent of others’ and 

can be simulated without including other clusters. 

Since we are interested only in growth during 

nucleation, clusters are assumed to be so small 

relative to the separation between clusters that an 

effectively infinite untransformed space surrounds 

each cluster, and the concentration approaches 𝑐∞ as 

the distance from the cluster increases. 

 

More general models with anisotropic growth, non-

diffusion-limited growth, or growth affected by 

neighbor clusters are possible, but will be deferred to 

future work. 

 

Governing Equations 
 

When growth is diffusion controlled, molecular 

exchange between a cluster and the parent phase is so 

much faster than diffusion to the cluster that 

concentration immediately outside the cluster is in 

local equilibrium with concentration in the cluster. 

Also, heat exchange is relatively instantaneous, so 

temperature is uniform throughout the system. Then, 

clusters’ growth rate is wholly determined by the rate 

at which molecules diffuse to clusters, via mass 

conservation: 

 

RrRstable r

c

cc

D
R






    (1) 

 

where c is concentration, r is radial distance from the 

cluster and D is diffusivity. In this equation, the 

concentration gradient at the cluster surface must be 

determined from concurrently solving the diffusion 

equation 
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with boundary conditions 
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A concentration profile satisfying these constraints is 

shown in Figure 1. If 𝑐𝑅 were constant, these 
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equations would admit the solution in [2]. However, 

capillarity causes 𝑐𝑅 to be higher for smaller clusters 

[3]: 
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where γ is surface tension, k is Boltzmann’s factor 

and T is temperature. 

 

 
 

Figure 1. Concentration profile around growing cluster. 

Source phase is depleted near cluster, and rises in 

concentration away from cluster. Arrows show radial 

direction of molecular diffusion to cluster from far field. 

 

Eqs. (1) - (5) must be solved together with initial 

conditions on c and R. 𝑐(0, 𝑡) is randomly determined 

by concentration fluctuations and can affect 𝑅̇. 

However, we expect the impact on 𝑅̇ to be transient, 

so that 𝑅̇ becomes independent of initial condition 

after sufficient time has elapsed. To rapidly obtain 

such growth rates, the initial condition should be 

chosen to minimize the transient time. Determining 

this initial condition is beyond the scope of this 

paper; however, 𝑐(0, 𝑡) should vary smoothly and 

monotonically between Eqs. (3) and (4). A candidate 

𝑐(0, 𝑡) with this property is the solution in [2] with 𝑐𝑅 

fixed at its initial value. This solution also has the 

ideal potential of being a good approximation of the 

true solution at early times if growth is initially slow 

enough that 𝑐𝑅 is approximately constant. We 

therefore model growth with this solution as initial 

concentration. 

 

The choice of a monotonic 𝑐(0, 𝑡) constrains initial R 

to be large enough for positive growth. In particular, 

R must be so large that 𝑐𝑅 < 𝑐∞, and the 

concentration gradient in Eq. (1) is positive so mass 

diffuses into the nucleus. Then, to obtain 𝑅̇ for the 

largest range of R, we start with R only 1% greater 

than the critical radius where 𝑐𝑅 = 𝑐∞. 

 

With these initial conditions, Eqs. (1) – (5) can be 

solved numerically to give 𝑅̇ and R at different t. 

Then, eliminating t gives 𝑅̇(𝑅). 

 

Computational Methods 
 

Several techniques were attempted in COMSOL to 

solve the equations in the previous section. For 

expedience, each took advantage of radial symmetry 

to reduce the 2D problem to a 1D one. All were 

tested on the capillarity-free 1D case where γ=0, and 

checked against the solution in [2].  

 

The most direct of these methods involves simulating 

the moving cluster surface using COMSOL’s Moving 

Mesh interface. A less direct alternative sidesteps the 

issue of interface migration by changing to a moving 

reference frame with 

 

Rrr ˆ     (6) 

 

In either method, the far-field boundary condition, 

Eq. (4), can only be applied at a finite distance from 

the origin, leading to potential discrepancies with the 

test solution satisfying Eq. (4) exactly. We have 

found the discrepancy within tolerance when the 

boundary condition is applied at a distance at least 

around ten times the cluster’s maximum size at the 

end of the simulation.  

 

A third method avoids the problem of approximating 

an infinite system by switching to a coordinate 

system with  𝑟̂ = 𝑅/𝑟. There, the parent phase is 

limited to 0 <  𝑟̂ < 1.  

 

Among these methods, the first and third were 

respectively found to be least accurate and slowest, 

while the second agreed well with the test solution 

and was reasonably fast. We therefore used the 

second method to compute growth rates of clusters 

subject to capillarity effects. 

 

The chosen method amounts to adding a convective 

term to Eq. (2). We found it also necessary to 

introduce a source term in shifting and rescaling the 

concentration field by  
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to fix 𝑐̂(𝑅, 𝑡). The transformed equation was input in 

the Transport of Diluted Species interface and 

coupled to Eq. (1) at R by applying a linear extrusion 

to the dependent variable in a Domain ODEs and 

DAEs interface. 

 

Eqs. (1) - (5) suggest the growth rate depends on 

many parameters. The number of degrees of freedom 

may be reduced to  
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by non-dimensionalization via 

 

Quantity Scale 

Length 𝜆 =
𝛾

𝑘𝑇𝑐𝑠𝑡𝑎𝑏𝑙𝑒

 

Time 
𝜆2

𝐷
 

Concentration 𝑐𝑠𝑡𝑎𝑏𝑙𝑒  

 

Table 1. Scaling parameters. 

 

Then, the growth rate can be obtained by multiplying 

the non-dimensionalized growth rate by 𝐷/𝜆. In this 

way, all possible growth rates can be obtained by 

sweeping over the two degrees of freedom. Since 

growth requires 𝑐𝑒𝑞 < 𝑐∞, the parameter sweep is 

limited to 
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For each simulation in the sweep, the initial 

concentration profile was computed by a MATLAB 

function called through LiveLink. The concentration 

was defined on an arithmetically distributed mesh 

with number of elements equal 10x the non-

dimensionalized length of the finite element domain 

and element ratio of 1000 to focus on capturing 

concentration variation closer to nuclei. Solution 

accuracy was improved by adjusting the following 

solver options from their default values: 

1. Automatic nonlinear (Newton) method was 

chosen. 

2. Initial step size was fixed at 0.001. 

3. Consistent initialization was switched off. 

 

Results for 𝑹̇(𝑹) 
 

Growth rates for different 𝑛𝑒𝑞  and 𝑛∞ are shown in 

Figures 2. Growth rates always begin with a sharp 

decrease with cluster size, before peaking then 

gradually decreasing. The plunge at small sizes is 

likely transient, since it is sensitive to how close the 

initial size is to the critical size. The drop appears 

nearly linear on the log-log scale and is reminiscent 

of  𝑅̇ ∝ 𝑅−1 from depletion of the original phase near 

the nucleus in solutions uncorrected for capillarity. 

As R increases, capillarity lowers the concentration in 

the immediate vicinity of clusters via Eq. (5), 

increasing the concentration gradient and thus 𝑅̇ in 

Eq. (1). Further increase in R eventually brings 𝑐𝑅 

close enough to 𝑐𝑒𝑞  that 𝑐𝑅 is practically constant, 

and 𝑅̇ follows the capillarity-uncorrected solution to 

decrease as 𝑅−1. 

 

 

 
 

Figure 2. Growth rate decreases with 𝑛𝑒𝑞  (top) and 

increases with 𝑛∞ (bottom). Growth rate approaches 

R

R

R

R
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solution for 𝑐𝑅 = 𝑐𝑒𝑞  without capillarity correction (dashed 

lines) as growing interface becomes planar (𝑅 → ∞). 

 

After the initial decline in 𝑅̇, 𝑅̇ at the same cluster 

size is higher for smaller 𝑛𝑒𝑞  and larger 𝑛∞. This 

trend can be understood from how the concentration 

gradient in Eq. (1) is likely to be steeper the larger 

the separation between  𝑛𝑒𝑞  and 𝑛∞. The change in 𝑅̇ 

is less pronounced for decreasing 𝑛𝑒𝑞  because the 

increase in concentration gradient is partially offset 

by the increased local depletion, which boosts the 

denominator in Eq. (1). 

 

Comparison with capillarity-uncorrected 

solution for 𝑹̇(𝑹) 
 

Because the growth simulations are lengthy and have 

to be repeated to obtain growth rates for different 

conditions, it is expedient to have simple 

approximations of growth rates. Such approximations 

are especially useful in optimization applications 

where growth rates a variety of different processing 

conditions are needed. A natural choice for a trial 

approximation is the capillarity-uncorrected solution 

for surface concentration on a cluster fixed at its 

equilibrium value, shown as dashed lines in Figure 2. 

This solution is expected to agree well with the 

growth rate of large clusters, because the surface 

concentration approaches the equilibrium 

concentration as clusters grow, according to Eq. (5). 

However, the solution must overestimate actual 

growth rates of small clusters because the surface 

concentration is significantly larger than its 

equilibrium value due to capillarity. 

 

A better approximation can be constructed from 

partly correcting the positive bias of the capillarity-

uncorrected solution relative to the actual growth 

rate. To do so, we make use of how the growth rate 

of clusters of a particular size in one capillarity-

uncorrected solution is smaller than that in another 

for larger surface concentration. Then, by using the 

solution for size-independent surface concentration 

equal 𝑐𝑅 from Eq. (5) evaluated at size R of those 

clusters, we can decrease the bias for clusters of size 

R. By following the same procedure for each R, we 

construct a new estimate with decreased bias at all 

sizes. This estimate can be understood as a trajectory 

in 𝑅̇-R space passing through a different capillarity-

uncorrected solution at every R, as illustrated in 

Figure 3.  

 

 
 
Figure 3. Improved estimate of growth rate from joining 

solutions without capillarity correction for different fixed 

surface concentrations on clusters at corresponding R. The 

estimate is able to capture the rise in 𝑅̇ from capillarity, 

unlike each capillarity-uncorrected solution, which can 

only predict the 𝑅−1 behavior. 

 

The modified estimate will still be no smaller than 

the true growth rate by the following argument. The 

estimate will exactly equal the real rate at the 

smallest R, because the initial condition has been 

chosen to match the capillarity-uncorrected solution 

the estimate uses for that R. For slightly larger R, the 

estimate uses a capillarity-uncorrected solution that 

assumes a correspondingly smaller surface 

concentration and consequently faster growth at 

smaller R. Because cluster growth to slightly larger R 

is slower, diffusion has more time to occur, so the 

concentration profile is more quasi-steady, i.e. gentler 

near the cluster surface, resulting in slower 𝑅̇ in Eq. 

(1). By induction, clusters of even larger R will also 

grow at a slower rate than that predicted by the multi-

solution estimate. Therefore, we can be sure the 

modified estimate does not increase the magnitude of 

the bias by overcorrection, as confirmed in Figure 4, 

which shows the decrease in error from the improved 

estimate. 

 

 

 

R

R



Excerpt from the Proceedings of the 2017 COMSOL Conference in Singapore 

 

 
 
Figure 4. Relative deviation of growth rates from 

capillarity-uncorrected solution (dashed) and improved 

estimate (solid). For convenience, the abscissa is chosen as 

the difference of 𝜉(𝑅) =
𝑐∞−𝑐𝑅

𝑐𝑠𝑡𝑎𝑏𝑙𝑒−𝑐𝑅
 from its limiting value as 

a measure of the cluster’s planarity. Initial surge originates 

from fall of actual growth rates detailed in previous section.   

 

Conclusions 
 

We computed 2D diffusion-limited growth rates that 

are affected by capillarity by multiphysics modeling 

in COMSOL. To facilitate modeling with these rates, 

we also constructed a simple estimate that agrees 

well with growth rates of large clusters. These growth 

rates can be incorporated into Slezov’s nucleation 

model to better capture diffusion and capillarity 

effects. Furthermore, the methods developed can be 

used to study negative growth and growth in higher 

dimensions. 
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